Bridgmanite Freezing in Shocked Meteorites Due To Amorphization‐Induced Stress

Bridgmanite, the most abundant mineral in the Earth's lower mantle, can be found in meteorites that experienced instantaneous high shock pressure during parent body impact. However, the presence of bridgmanite in meteorites is unusual because bridgmanite grains should be amorphized under residu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geophysical research letters 2022-07, Vol.49 (13), p.n/a
Hauptverfasser: Nishi, M., Kaneko, A., Ohgidani, H., Dekura, H., Kakizawa, S., Kawaguchi, S., Kobayashi, S., Sakaiya, T., Kondo, T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 13
container_start_page
container_title Geophysical research letters
container_volume 49
creator Nishi, M.
Kaneko, A.
Ohgidani, H.
Dekura, H.
Kakizawa, S.
Kawaguchi, S.
Kobayashi, S.
Sakaiya, T.
Kondo, T.
description Bridgmanite, the most abundant mineral in the Earth's lower mantle, can be found in meteorites that experienced instantaneous high shock pressure during parent body impact. However, the presence of bridgmanite in meteorites is unusual because bridgmanite grains should be amorphized under residual post‐shock temperatures at ambient pressure. Here, we report the results of time‐resolved synchrotron X‐ray diffraction measurements at high temperatures to analyze the amorphization mechanisms and kinetics of bridgmanite. The thermal expansion coefficient of bridgmanite before the amorphization is 2.1 × 10−5 K−1. At higher temperatures, our results show that the significant volume expansion due to the amorphization induces static stress that can reach up to ∼0.5 GPa, which prevents the progress of the amorphization. This time‐insensitive amorphization kinetics may have enabled the preservation of bridgmanite in the shocked meteorite that fell on Earth. Also, the reaction progress estimated based on the amorphous fraction provides the residual post‐shock temperature. Plain Language Summary Bridgmanite is the most abundant mineral in the Earth's lower mantle. Natural bridgmanite in the shocked meteorite is used to constrain the impact histories of parent bodies since this mineral can form at very high pressure. However, the presence of bridgmanite in meteorites is mysterious because it should be easily amorphized at atmospheric pressure after the shock events. This study reports the amorphization mechanisms and kinetics of bridgmanite based on time‐resolved synchrotron X‐ray diffraction techniques. We found that the significant volume expansion due to the amorphization induces static stress, which hinders the amorphization from progressing. The preservation of bridgmanite in meteorites can be explained by this unique amorphization kinetics. Key Points Amorphization kinetics of bridgmanite was studied via time‐resolved synchrotron X‐ray diffraction measurements Significant volume expansion due to the bridgmanite amorphization induces static stress, which prevents the progress of the amorphization Preservation of bridgmanite in the meteorites can be explained by the unique amorphization kinetics
doi_str_mv 10.1029/2022GL098231
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2688574371</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2688574371</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4337-573512baca850a4344fb73e25da65cb8acd390e8b0d6826244355b9ceea8697c3</originalsourceid><addsrcrecordid>eNp90M1OAjEQAODGaCKiNx9gE6-i079t94goSLJGI3jedLsFirDFdjcGTj6Cz-iTWIMHT55mMvNlJjMInWO4wkCyawKEjHLIJKH4AHVwxlhPAohD1AHIYk5EeoxOQlgCAAWKO-jpxttqvla1bUwy9MbsbD1PbJ1MFk6_mip5MI1xPnZDctuaZOqS_tr5zcLuVGNd_fXxOa6rVkc5abwJ4RQdzdQqmLPf2EUvw7vp4L6XP47Gg37eU4xS0eOCckxKpZXkEEuMzUpBDeGVSrkupdIVzcDIEqpUkpQwRjkvM22MkmkmNO2ii_3cjXdvrQlNsXStr-PKgqRScsGowFFd7pX2LgRvZsXG27Xy2wJD8fOz4u_PIid7_m5XZvuvLUbPecpYvOMbkxptUg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2688574371</pqid></control><display><type>article</type><title>Bridgmanite Freezing in Shocked Meteorites Due To Amorphization‐Induced Stress</title><source>Wiley Free Content</source><source>Wiley-Blackwell AGU Digital Library</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Nishi, M. ; Kaneko, A. ; Ohgidani, H. ; Dekura, H. ; Kakizawa, S. ; Kawaguchi, S. ; Kobayashi, S. ; Sakaiya, T. ; Kondo, T.</creator><creatorcontrib>Nishi, M. ; Kaneko, A. ; Ohgidani, H. ; Dekura, H. ; Kakizawa, S. ; Kawaguchi, S. ; Kobayashi, S. ; Sakaiya, T. ; Kondo, T.</creatorcontrib><description>Bridgmanite, the most abundant mineral in the Earth's lower mantle, can be found in meteorites that experienced instantaneous high shock pressure during parent body impact. However, the presence of bridgmanite in meteorites is unusual because bridgmanite grains should be amorphized under residual post‐shock temperatures at ambient pressure. Here, we report the results of time‐resolved synchrotron X‐ray diffraction measurements at high temperatures to analyze the amorphization mechanisms and kinetics of bridgmanite. The thermal expansion coefficient of bridgmanite before the amorphization is 2.1 × 10−5 K−1. At higher temperatures, our results show that the significant volume expansion due to the amorphization induces static stress that can reach up to ∼0.5 GPa, which prevents the progress of the amorphization. This time‐insensitive amorphization kinetics may have enabled the preservation of bridgmanite in the shocked meteorite that fell on Earth. Also, the reaction progress estimated based on the amorphous fraction provides the residual post‐shock temperature. Plain Language Summary Bridgmanite is the most abundant mineral in the Earth's lower mantle. Natural bridgmanite in the shocked meteorite is used to constrain the impact histories of parent bodies since this mineral can form at very high pressure. However, the presence of bridgmanite in meteorites is mysterious because it should be easily amorphized at atmospheric pressure after the shock events. This study reports the amorphization mechanisms and kinetics of bridgmanite based on time‐resolved synchrotron X‐ray diffraction techniques. We found that the significant volume expansion due to the amorphization induces static stress, which hinders the amorphization from progressing. The preservation of bridgmanite in meteorites can be explained by this unique amorphization kinetics. Key Points Amorphization kinetics of bridgmanite was studied via time‐resolved synchrotron X‐ray diffraction measurements Significant volume expansion due to the bridgmanite amorphization induces static stress, which prevents the progress of the amorphization Preservation of bridgmanite in the meteorites can be explained by the unique amorphization kinetics</description><identifier>ISSN: 0094-8276</identifier><identifier>EISSN: 1944-8007</identifier><identifier>DOI: 10.1029/2022GL098231</identifier><language>eng</language><publisher>Washington: John Wiley &amp; Sons, Inc</publisher><subject>Amorphization ; Atmospheric pressure ; bridgmanite ; Earth ; Earth mantle ; Freezing ; High pressure ; High temperature ; Kinetics ; Lower mantle ; mantle ; meteorite ; Meteorites ; Meteors &amp; meteorites ; Preservation ; Pressure ; Shock ; Synchrotrons ; Thermal expansion ; X-ray diffraction</subject><ispartof>Geophysical research letters, 2022-07, Vol.49 (13), p.n/a</ispartof><rights>2022. American Geophysical Union. All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4337-573512baca850a4344fb73e25da65cb8acd390e8b0d6826244355b9ceea8697c3</citedby><cites>FETCH-LOGICAL-a4337-573512baca850a4344fb73e25da65cb8acd390e8b0d6826244355b9ceea8697c3</cites><orcidid>0000-0002-0005-2703 ; 0000-0002-7597-3179 ; 0000-0002-3246-3320</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1029%2F2022GL098231$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1029%2F2022GL098231$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,1427,11493,27901,27902,45550,45551,46384,46443,46808,46867</link.rule.ids></links><search><creatorcontrib>Nishi, M.</creatorcontrib><creatorcontrib>Kaneko, A.</creatorcontrib><creatorcontrib>Ohgidani, H.</creatorcontrib><creatorcontrib>Dekura, H.</creatorcontrib><creatorcontrib>Kakizawa, S.</creatorcontrib><creatorcontrib>Kawaguchi, S.</creatorcontrib><creatorcontrib>Kobayashi, S.</creatorcontrib><creatorcontrib>Sakaiya, T.</creatorcontrib><creatorcontrib>Kondo, T.</creatorcontrib><title>Bridgmanite Freezing in Shocked Meteorites Due To Amorphization‐Induced Stress</title><title>Geophysical research letters</title><description>Bridgmanite, the most abundant mineral in the Earth's lower mantle, can be found in meteorites that experienced instantaneous high shock pressure during parent body impact. However, the presence of bridgmanite in meteorites is unusual because bridgmanite grains should be amorphized under residual post‐shock temperatures at ambient pressure. Here, we report the results of time‐resolved synchrotron X‐ray diffraction measurements at high temperatures to analyze the amorphization mechanisms and kinetics of bridgmanite. The thermal expansion coefficient of bridgmanite before the amorphization is 2.1 × 10−5 K−1. At higher temperatures, our results show that the significant volume expansion due to the amorphization induces static stress that can reach up to ∼0.5 GPa, which prevents the progress of the amorphization. This time‐insensitive amorphization kinetics may have enabled the preservation of bridgmanite in the shocked meteorite that fell on Earth. Also, the reaction progress estimated based on the amorphous fraction provides the residual post‐shock temperature. Plain Language Summary Bridgmanite is the most abundant mineral in the Earth's lower mantle. Natural bridgmanite in the shocked meteorite is used to constrain the impact histories of parent bodies since this mineral can form at very high pressure. However, the presence of bridgmanite in meteorites is mysterious because it should be easily amorphized at atmospheric pressure after the shock events. This study reports the amorphization mechanisms and kinetics of bridgmanite based on time‐resolved synchrotron X‐ray diffraction techniques. We found that the significant volume expansion due to the amorphization induces static stress, which hinders the amorphization from progressing. The preservation of bridgmanite in meteorites can be explained by this unique amorphization kinetics. Key Points Amorphization kinetics of bridgmanite was studied via time‐resolved synchrotron X‐ray diffraction measurements Significant volume expansion due to the bridgmanite amorphization induces static stress, which prevents the progress of the amorphization Preservation of bridgmanite in the meteorites can be explained by the unique amorphization kinetics</description><subject>Amorphization</subject><subject>Atmospheric pressure</subject><subject>bridgmanite</subject><subject>Earth</subject><subject>Earth mantle</subject><subject>Freezing</subject><subject>High pressure</subject><subject>High temperature</subject><subject>Kinetics</subject><subject>Lower mantle</subject><subject>mantle</subject><subject>meteorite</subject><subject>Meteorites</subject><subject>Meteors &amp; meteorites</subject><subject>Preservation</subject><subject>Pressure</subject><subject>Shock</subject><subject>Synchrotrons</subject><subject>Thermal expansion</subject><subject>X-ray diffraction</subject><issn>0094-8276</issn><issn>1944-8007</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp90M1OAjEQAODGaCKiNx9gE6-i079t94goSLJGI3jedLsFirDFdjcGTj6Cz-iTWIMHT55mMvNlJjMInWO4wkCyawKEjHLIJKH4AHVwxlhPAohD1AHIYk5EeoxOQlgCAAWKO-jpxttqvla1bUwy9MbsbD1PbJ1MFk6_mip5MI1xPnZDctuaZOqS_tr5zcLuVGNd_fXxOa6rVkc5abwJ4RQdzdQqmLPf2EUvw7vp4L6XP47Gg37eU4xS0eOCckxKpZXkEEuMzUpBDeGVSrkupdIVzcDIEqpUkpQwRjkvM22MkmkmNO2ii_3cjXdvrQlNsXStr-PKgqRScsGowFFd7pX2LgRvZsXG27Xy2wJD8fOz4u_PIid7_m5XZvuvLUbPecpYvOMbkxptUg</recordid><startdate>20220716</startdate><enddate>20220716</enddate><creator>Nishi, M.</creator><creator>Kaneko, A.</creator><creator>Ohgidani, H.</creator><creator>Dekura, H.</creator><creator>Kakizawa, S.</creator><creator>Kawaguchi, S.</creator><creator>Kobayashi, S.</creator><creator>Sakaiya, T.</creator><creator>Kondo, T.</creator><general>John Wiley &amp; Sons, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>8FD</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KL.</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-0005-2703</orcidid><orcidid>https://orcid.org/0000-0002-7597-3179</orcidid><orcidid>https://orcid.org/0000-0002-3246-3320</orcidid></search><sort><creationdate>20220716</creationdate><title>Bridgmanite Freezing in Shocked Meteorites Due To Amorphization‐Induced Stress</title><author>Nishi, M. ; Kaneko, A. ; Ohgidani, H. ; Dekura, H. ; Kakizawa, S. ; Kawaguchi, S. ; Kobayashi, S. ; Sakaiya, T. ; Kondo, T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4337-573512baca850a4344fb73e25da65cb8acd390e8b0d6826244355b9ceea8697c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Amorphization</topic><topic>Atmospheric pressure</topic><topic>bridgmanite</topic><topic>Earth</topic><topic>Earth mantle</topic><topic>Freezing</topic><topic>High pressure</topic><topic>High temperature</topic><topic>Kinetics</topic><topic>Lower mantle</topic><topic>mantle</topic><topic>meteorite</topic><topic>Meteorites</topic><topic>Meteors &amp; meteorites</topic><topic>Preservation</topic><topic>Pressure</topic><topic>Shock</topic><topic>Synchrotrons</topic><topic>Thermal expansion</topic><topic>X-ray diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nishi, M.</creatorcontrib><creatorcontrib>Kaneko, A.</creatorcontrib><creatorcontrib>Ohgidani, H.</creatorcontrib><creatorcontrib>Dekura, H.</creatorcontrib><creatorcontrib>Kakizawa, S.</creatorcontrib><creatorcontrib>Kawaguchi, S.</creatorcontrib><creatorcontrib>Kobayashi, S.</creatorcontrib><creatorcontrib>Sakaiya, T.</creatorcontrib><creatorcontrib>Kondo, T.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Geophysical research letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nishi, M.</au><au>Kaneko, A.</au><au>Ohgidani, H.</au><au>Dekura, H.</au><au>Kakizawa, S.</au><au>Kawaguchi, S.</au><au>Kobayashi, S.</au><au>Sakaiya, T.</au><au>Kondo, T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bridgmanite Freezing in Shocked Meteorites Due To Amorphization‐Induced Stress</atitle><jtitle>Geophysical research letters</jtitle><date>2022-07-16</date><risdate>2022</risdate><volume>49</volume><issue>13</issue><epage>n/a</epage><issn>0094-8276</issn><eissn>1944-8007</eissn><abstract>Bridgmanite, the most abundant mineral in the Earth's lower mantle, can be found in meteorites that experienced instantaneous high shock pressure during parent body impact. However, the presence of bridgmanite in meteorites is unusual because bridgmanite grains should be amorphized under residual post‐shock temperatures at ambient pressure. Here, we report the results of time‐resolved synchrotron X‐ray diffraction measurements at high temperatures to analyze the amorphization mechanisms and kinetics of bridgmanite. The thermal expansion coefficient of bridgmanite before the amorphization is 2.1 × 10−5 K−1. At higher temperatures, our results show that the significant volume expansion due to the amorphization induces static stress that can reach up to ∼0.5 GPa, which prevents the progress of the amorphization. This time‐insensitive amorphization kinetics may have enabled the preservation of bridgmanite in the shocked meteorite that fell on Earth. Also, the reaction progress estimated based on the amorphous fraction provides the residual post‐shock temperature. Plain Language Summary Bridgmanite is the most abundant mineral in the Earth's lower mantle. Natural bridgmanite in the shocked meteorite is used to constrain the impact histories of parent bodies since this mineral can form at very high pressure. However, the presence of bridgmanite in meteorites is mysterious because it should be easily amorphized at atmospheric pressure after the shock events. This study reports the amorphization mechanisms and kinetics of bridgmanite based on time‐resolved synchrotron X‐ray diffraction techniques. We found that the significant volume expansion due to the amorphization induces static stress, which hinders the amorphization from progressing. The preservation of bridgmanite in meteorites can be explained by this unique amorphization kinetics. Key Points Amorphization kinetics of bridgmanite was studied via time‐resolved synchrotron X‐ray diffraction measurements Significant volume expansion due to the bridgmanite amorphization induces static stress, which prevents the progress of the amorphization Preservation of bridgmanite in the meteorites can be explained by the unique amorphization kinetics</abstract><cop>Washington</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1029/2022GL098231</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-0005-2703</orcidid><orcidid>https://orcid.org/0000-0002-7597-3179</orcidid><orcidid>https://orcid.org/0000-0002-3246-3320</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0094-8276
ispartof Geophysical research letters, 2022-07, Vol.49 (13), p.n/a
issn 0094-8276
1944-8007
language eng
recordid cdi_proquest_journals_2688574371
source Wiley Free Content; Wiley-Blackwell AGU Digital Library; Wiley Online Library Journals Frontfile Complete; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Amorphization
Atmospheric pressure
bridgmanite
Earth
Earth mantle
Freezing
High pressure
High temperature
Kinetics
Lower mantle
mantle
meteorite
Meteorites
Meteors & meteorites
Preservation
Pressure
Shock
Synchrotrons
Thermal expansion
X-ray diffraction
title Bridgmanite Freezing in Shocked Meteorites Due To Amorphization‐Induced Stress
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-19T15%3A41%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bridgmanite%20Freezing%20in%20Shocked%20Meteorites%20Due%20To%20Amorphization%E2%80%90Induced%20Stress&rft.jtitle=Geophysical%20research%20letters&rft.au=Nishi,%20M.&rft.date=2022-07-16&rft.volume=49&rft.issue=13&rft.epage=n/a&rft.issn=0094-8276&rft.eissn=1944-8007&rft_id=info:doi/10.1029/2022GL098231&rft_dat=%3Cproquest_cross%3E2688574371%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2688574371&rft_id=info:pmid/&rfr_iscdi=true