A new shear formula for tapered beamlike solids undergoing large displacements
In many engineering applications it is often necessary to determine the flow of shear stresses in the cross-sections of beamlike bodies. Taking a cue from Jourawski's well-known formula, several scholars have proposed expressions for evaluating the shear stresses in non-prismatic linear elastic...
Gespeichert in:
Veröffentlicht in: | Meccanica (Milan) 2022, Vol.57 (7), p.1713-1734 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In many engineering applications it is often necessary to determine the flow of shear stresses in the cross-sections of beamlike bodies. Taking a cue from Jourawski's well-known formula, several scholars have proposed expressions for evaluating the shear stresses in non-prismatic linear elastic beams, where longitudinal variations in the size and shape of the cross-sections produces complex stress fields. In the present paper, a new shear formula, derived using a mechanical model developed in a previous work, is presented for tapered beams subject to even large displacements and small strains. Numerical examples and comparisons with results obtained using other formulas in the literature and non-linear 3D-FEM simulations show how the new formula constitutes an important generalization of the previous ones and is able to provide particularly accurate results. |
---|---|
ISSN: | 0025-6455 1572-9648 |
DOI: | 10.1007/s11012-022-01529-1 |