Over-reflection of acoustic waves by supersonic exponential boundary layer flows
The two-dimensional acoustic wave equation for inviscid compressible boundary layer flows, i.e. the Pridmore-Brown equation with an exponential velocity profile for homentropic flows, is studied for the reflection and over-reflection of acoustic waves based on the exact solution in terms of the conf...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2022-08, Vol.945, Article A9 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The two-dimensional acoustic wave equation for inviscid compressible boundary layer flows, i.e. the Pridmore-Brown equation with an exponential velocity profile for homentropic flows, is studied for the reflection and over-reflection of acoustic waves based on the exact solution in terms of the confluent Heun function. The reflection coefficient $R$, which is the ratio of the amplitude of the reflected to that of the incoming acoustic wave, is determined as a function of the streamwise wavenumber $\alpha$, the Mach number $M$ and the incident angle $\phi$ of the acoustic waves. Over-reflection refers to $R>1$, i.e. the reflected wave has a larger amplitude than the incident wave. We prove that, in the supersonic context, energy is always transferred from the base flow to the reflected wave, i.e. $R1$. In our analysis, we observe a special phenomenon, resonant over-reflection, which is proven to be closely related to resonant frequencies $\omega _r$ of unstable modes of the temporal stability of the base flow. At resonant frequencies of the first unstable mode, the over-reflection coefficient exhibits an unusual peak in an extremely narrow frequency interval. The maximum values of these peaks are largely synchronized with the variation of the growth rate $\omega _i$ of the unstable modes. In addition, resonant over-reflection appears also at resonant frequencies of other higher unstable modes, but their peaks of the over-reflection coefficient are always smaller than that induced by the first unstable mode. |
---|---|
ISSN: | 0022-1120 1469-7645 |
DOI: | 10.1017/jfm.2022.555 |