Bayesian Neural Networks for classification tasks in the Rubin big data era

Upcoming surveys such as the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will detect up to 10 million time-varying sources in the sky every night for ten years. This information will be transmitted in a continuous stream to brokers that will select the most promising events for...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2022-07
Hauptverfasser: Möller, Anais, Thibault de Boissière
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Upcoming surveys such as the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) will detect up to 10 million time-varying sources in the sky every night for ten years. This information will be transmitted in a continuous stream to brokers that will select the most promising events for a variety of science cases using machine learning algorithms. We study the benefits and challenges of Bayesian Neural Networks (BNNs) for this type of classification tasks. BNNs are found to be accurate classifiers which also provide additional information: they quantify the classification uncertainty which can be harnessed to analyse this upcoming data avalanche more efficiently.
ISSN:2331-8422