24.4% industrial tunnel oxide passivated contact solar cells with ozone-gas oxidation Nano SiOx and tube PECVD prepared in-situ doped polysilicon
Ozone-gas oxidation (OGO) technology, capable of integrating into tube plasma-enhanced chemical vapor deposition (PECVD) technology, is developed to prepare the Nano SiOx layer for tunnel oxide passivated contact (TOPCon) solar cells in this work. The effects of gas flow, oxidation temperature, and...
Gespeichert in:
Veröffentlicht in: | Solar energy materials and solar cells 2022-08, Vol.243, p.111803, Article 111803 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Ozone-gas oxidation (OGO) technology, capable of integrating into tube plasma-enhanced chemical vapor deposition (PECVD) technology, is developed to prepare the Nano SiOx layer for tunnel oxide passivated contact (TOPCon) solar cells in this work. The effects of gas flow, oxidation temperature, and annealing temperature on passivation quality are investigated. The X-ray photoelectron spectroscopy (XPS) indicates that OGO SiOx possesses a Si4+ proportion of about 20%, higher than the nitric acid oxidized (NAOS) SiOx and plasma-assisted N2O oxidation (PANO) SiOx. The implied open-circuit voltage (iVoc) of the hydrogenated lifetime sample is promoted to more than 740 mV with the highest value of 748 mV, corresponding to a lowest single-sided saturation current density (J0,s) of 3.1 fA/cm2. The contact resistivity extracted from the Cox-Strack method is |
---|---|
ISSN: | 0927-0248 1879-3398 |
DOI: | 10.1016/j.solmat.2022.111803 |