Boundedness of vector-valued Calderón-Zygmund operators on non-homogeneous metric measure spaces
Let ( X , d , μ ) be a non-homogeneous metric measure space and satisfies non-atomic condition that μ ( { x } ) = 0 for all x ∈ X . B 1 and B 2 are Banach spaces. In this paper, we show that the boundedness of the vector-valued Calderón-Zygmund operator T → from L 2 ( X , B 1 ) to L 2 ( X , B 2 ) is...
Gespeichert in:
Veröffentlicht in: | Journal of pseudo-differential operators and applications 2022-09, Vol.13 (3), Article 36 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
(
X
,
d
,
μ
)
be a non-homogeneous metric measure space and satisfies non-atomic condition that
μ
(
{
x
}
)
=
0
for all
x
∈
X
.
B
1
and
B
2
are Banach spaces. In this paper, we show that the boundedness of the vector-valued Calderón-Zygmund operator
T
→
from
L
2
(
X
,
B
1
)
to
L
2
(
X
,
B
2
)
is equivalent to
T
→
from
L
p
(
X
,
B
1
)
to
L
p
(
X
,
B
2
)
for
p
∈
(
1
,
∞
)
, and from
L
1
(
X
,
B
1
)
to
L
1
,
∞
(
X
,
B
2
)
. As an application, we prove that if
T
→
is bounded from
L
2
(
X
,
B
1
)
to
L
2
(
X
,
B
2
)
, then its maximal operator is bounded from
L
p
(
X
,
B
1
)
to
L
p
(
X
,
B
2
)
for
p
∈
(
1
,
∞
)
and from
L
1
(
X
,
B
1
)
to
L
1
,
∞
(
X
,
B
2
)
. |
---|---|
ISSN: | 1662-9981 1662-999X |
DOI: | 10.1007/s11868-022-00468-5 |