Boundedness of vector-valued Calderón-Zygmund operators on non-homogeneous metric measure spaces

Let ( X , d , μ ) be a non-homogeneous metric measure space and satisfies non-atomic condition that μ ( { x } ) = 0 for all x ∈ X . B 1 and B 2 are Banach spaces. In this paper, we show that the boundedness of the vector-valued Calderón-Zygmund operator T → from L 2 ( X , B 1 ) to L 2 ( X , B 2 ) is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of pseudo-differential operators and applications 2022-09, Vol.13 (3), Article 36
1. Verfasser: Han, Yaoyao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let ( X , d , μ ) be a non-homogeneous metric measure space and satisfies non-atomic condition that μ ( { x } ) = 0 for all x ∈ X . B 1 and B 2 are Banach spaces. In this paper, we show that the boundedness of the vector-valued Calderón-Zygmund operator T → from L 2 ( X , B 1 ) to L 2 ( X , B 2 ) is equivalent to T → from L p ( X , B 1 ) to L p ( X , B 2 ) for p ∈ ( 1 , ∞ ) , and from L 1 ( X , B 1 ) to L 1 , ∞ ( X , B 2 ) . As an application, we prove that if T → is bounded from L 2 ( X , B 1 ) to L 2 ( X , B 2 ) , then its maximal operator is bounded from L p ( X , B 1 ) to L p ( X , B 2 ) for p ∈ ( 1 , ∞ ) and from L 1 ( X , B 1 ) to L 1 , ∞ ( X , B 2 ) .
ISSN:1662-9981
1662-999X
DOI:10.1007/s11868-022-00468-5