Resolving magnetic contributions in BiFeO3 nanoparticles using First order reversal curves

•• BiFeO3 nanoparticles show a ferromagnetic-like signal that scales with nanoparticle size.•• Magnetometry and a First order reversal curves analysis show a signature of two distinct reversal mechanism.•• The magnetic contributions suggest a magnetic core–shell structure. BiFeO3 (BFO) nanoparticles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of magnetism and magnetic materials 2022-08, Vol.556, p.169409, Article 169409
Hauptverfasser: Cardona-Rodríguez, A., Ramos Rodríguez, Edwin, Carranza-Celis, D., Vergara-Duran, N., da Cruz, A.S.E., Moscoso Londoño, O., Béron, F., Knobel, M., Reiber, A., Muraca, Diego, Gabriel Ramírez, Juan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•• BiFeO3 nanoparticles show a ferromagnetic-like signal that scales with nanoparticle size.•• Magnetometry and a First order reversal curves analysis show a signature of two distinct reversal mechanism.•• The magnetic contributions suggest a magnetic core–shell structure. BiFeO3 (BFO) nanoparticles (NPs) were studied using First-Order Reversal Curve (FORC) and temperature-dependent magnetometry measurements. The BFO NPs were fabricated by a sol–gel method, while the crystal structure and the average particle radius were obtained by powder X-ray diffraction analysis and Small-Angle X-Ray Scattering (SAXS) measurements, respectively. The NP size varies below and above the typical bulk BFO spin cycloid length (λ= 62 nm). Below λ, the NPs show ferromagnetic-like hysteresis loops where the saturation magnetization decreases while nanoparticle size rises. This magnetic behavior changes for NP size over λ, which only exhibits a paramagnetic contribution. The FORC distributions indicate the presence of two competing size-dependent contributions to the observed magnetic signal Also, the FORC distributions show that in the ferromagnetic regime there are two competing size-dependent contributions to the observed magnetic signal. Our results suggest the existence of a magnetic core–shell structure in NPs below λ, possibly driven by the strong spin–lattice coupling.
ISSN:0304-8853
1873-4766
DOI:10.1016/j.jmmm.2022.169409