Numerical Study and Structural Optimization of Vehicular Oil Cooler Based on 3D Impermeable Flow Model

A non-uniform permeable flow numerical model of vehicular oil cooler was proposed to simulate the thermal performance of oil cooler, due to the complex internal structure of cooler and the anisotropy of coolant flow and heat transfer. By comparing the numerical simulation results with the experiment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2022-07, Vol.14 (13), p.7757
Hauptverfasser: Fu, Jiahong, Hu, Zhecheng, Zhang, Yu, Lu, Guodong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A non-uniform permeable flow numerical model of vehicular oil cooler was proposed to simulate the thermal performance of oil cooler, due to the complex internal structure of cooler and the anisotropy of coolant flow and heat transfer. By comparing the numerical simulation results with the experimental results, the maximum error of the simulation results under different working conditions is 9.2%, which indicates that the modelling method is reliable and can improve the development efficiency. On this basis, through the three-dimensional numerical simulation to establish and optimize the oil cooler’s parameters. The thermal performance under different structural oil cooler were compared using the comprehensive evaluation factor j/f. The results and the experimental data show that under the impermeable flow model can obtain good heat transfer efficiency with low flow resistance at the same time. When the cross-sectional area is 3 mm2, length of 90 mm, layer number of 11, the model accuracy was 0.6%, as the optimal structure parameters, the heat transfer increase by 47% and with the total pressure drop increased by only 30%.
ISSN:2071-1050
2071-1050
DOI:10.3390/su14137757