Interaction of Irregular Distribution of Submerged Rigid Vegetation and Flow within a Straight Pool
The interaction of bedform and vegetation cover significantly affects the turbulent flow parameters. To investigate this interaction, experiments were carried out in both a gravel-bed river and a laboratory flume. The purpose of field investigations was to find the slopes for both the entrance secti...
Gespeichert in:
Veröffentlicht in: | Water (Basel) 2022-07, Vol.14 (13), p.2036 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The interaction of bedform and vegetation cover significantly affects the turbulent flow parameters. To investigate this interaction, experiments were carried out in both a gravel-bed river and a laboratory flume. The purpose of field investigations was to find the slopes for both the entrance section and exit section of pools, the grain size of the bed material, and the flow condition. Based on field data, without considering any scaling analysis, a straight pool was constructed in a laboratory flume that was 0.9 m wide, 0.6 m deep, and 14 m long. The entry and exit slopes of the straight pool were 7.4° and 4°, respectively. The straight pool had vertical side walls and a gravel bed with a median grain size of d50 = 23.3 mm. Plastic cylinders planted in an irregular pattern in the channel beds were used to model rigid submerged vegetation. The velocity components were recorded by using an ADV at 200 Hz. In this study, the distributions of velocity, Reynolds stress, and TKE were investigated for flows in the presence of submerged rigid vegetation in channel beds with various area densities of vegetation. Results show that the shape of Reynolds stress distribution depends on the entrance and exit slopes of the pool, as well as the irregular distribution pattern of vegetated elements. Inside the pool with the presence of submerged vegetation in the channel bed, the maximum TKE appears above the bed surface with a larger distance depending on the area density of vegetation in the channel bed. However, the momentum exchange and turbulent energy are likely influenced by the secondary circulation of the flows associated with the irregular distribution of vegetated elements in the channel bed. Results of the quadrant analysis show that the momentum between the flow, bedform, and vegetated elements is mostly transferred by sweep and ejection events. The outward event tends to grow toward the water surface, reaching the highest amount near the water surface. At the pool entrance section where the flow is decelerating, the ejection event is dominant near the bed while the sweep event is strong near the water surface. With the decrease in the vegetation density in the pool bed, both the ejection and outward events become dominant. |
---|---|
ISSN: | 2073-4441 2073-4441 |
DOI: | 10.3390/w14132036 |