Dracon: An Open-Hardware Based Platform for Single-Chip Low-Cost Reconfigurable IoT Devices

The development of devices for the Internet of Things (IoT) requires the rapid prototyping of different hardware configurations. In this paper, a modular hardware platform allowing to prototype, test and even implement IoT appliances on low-cost reconfigurable devices is presented. The proposed plat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Electronics (Basel) 2022-07, Vol.11 (13), p.2080
Hauptverfasser: Parrilla, Luis, García, Antonio, Castillo, Encarnación, Álvarez-Bermejo, José Antonio, López-Villanueva, Juan Antonio, Meyer-Baese, Uwe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The development of devices for the Internet of Things (IoT) requires the rapid prototyping of different hardware configurations. In this paper, a modular hardware platform allowing to prototype, test and even implement IoT appliances on low-cost reconfigurable devices is presented. The proposed platform, named Dracon, includes a Z80-clone microprocessor, up to 64 KB of RAM, and 256 inputs/outputs (I/Os). These I/Os can be used to connect additional co-processors within the same FPGA, external co-processors, communications modules, sensors and actuators. Dracon also includes as default peripherals a UART for programming and accessing the microprocessor, a Real Time Clock, and an Interrupt Timer. The use of an 8-bit microprocessor allows the use of the internal memory of the reconfigurable device as program memory, thereby, enabling the implementation of a complete IoT device within a single low-cost chip. Indeed, results using a Spartan 7 FPGA show that it is possible to implement Dracon with only 1515 6-input LUTs while operating at a maximum frequency of 80 MHz, which results in a better trade-off in terms of area and performance than other less powerful and less versatile alternatives in the literature. Moreover, the presented platform allows the development of embedded software applications independently of the selected FPGA device, enabling rapid prototyping and implementations on devices from different manufacturers.
ISSN:2079-9292
2079-9292
DOI:10.3390/electronics11132080