Understanding the Effects of Graphene Coating on the Electrostatic Field at the Tip of an Atom Probe Tomography Specimen
As a three-dimensional characterization method, atom probe tomography can provide key information that other methods cannot offer. Conductive coatings have proved to be an effective way for biological samples, and nonconductive samples in general, to be analyzed using voltage-pulsed atom probe tomog...
Gespeichert in:
Veröffentlicht in: | Microscopy and microanalysis 2022-08, Vol.28 (4), p.1054-1065 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1065 |
---|---|
container_issue | 4 |
container_start_page | 1054 |
container_title | Microscopy and microanalysis |
container_volume | 28 |
creator | Exertier, Florant Wang, Jiangting Fu, Jing Marceau, Ross K.W. |
description | As a three-dimensional characterization method, atom probe tomography can provide key information that other methods cannot offer. Conductive coatings have proved to be an effective way for biological samples, and nonconductive samples in general, to be analyzed using voltage-pulsed atom probe tomography. In this study, we analyzed the effects of graphene coating on an electrically conductive material and were able to confirm the detection of carbon atoms. We compare quantitative electrostatic field metrics for a single-coated and a multi-coated specimen and measure both a reduced voltage after graphene coating and lowered charge-state ratios for different ion species, suggesting a lowered evaporation field related to the graphene coating. This information will be instructive for future studies on graphene-coated, nonconductive biological specimens. |
doi_str_mv | 10.1017/S1431927621012356 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2685938354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1431927621012356</cupid><sourcerecordid>2685938354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-765ecd13e693c70a55db96a5ac13b6d453086d9f06b343ac05d8dbba240c2703</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wgek8zMspS2CgWF1vWQ17QpnWTMpGD_vZm24EJc5eae853LvQA8YvSMES5eVjinuCIFJ-lLKONXYJRaLCsxZtenGmeDfgvu-n6HEKKo4CPw_em0CX0UTlu3gXFr4KxpjIo99A1cBNFtjTNw6kUcdO_Oln1yBJ-waBWcW7PXUMSTtLbdQAoHJ9G38CN4mZq-9Zsh6whXnVG2Ne4e3DRi35uHyzsG6_lsPX3Nlu-Lt-lkmSmSFzErODNKY2p4RVWBBGNaVlwwoTCVXOeMopLrqkFc0pwKhZgutZSC5EiRAtExeDrHdsF_HUwf650_BJcm1oSXrKIlZXly4bNLpaX6YJq6C7YV4VhjVA_3rf_cNzH0wohWBqs35jf6f-oHWoJ8oA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685938354</pqid></control><display><type>article</type><title>Understanding the Effects of Graphene Coating on the Electrostatic Field at the Tip of an Atom Probe Tomography Specimen</title><source>Alma/SFX Local Collection</source><creator>Exertier, Florant ; Wang, Jiangting ; Fu, Jing ; Marceau, Ross K.W.</creator><creatorcontrib>Exertier, Florant ; Wang, Jiangting ; Fu, Jing ; Marceau, Ross K.W.</creatorcontrib><description>As a three-dimensional characterization method, atom probe tomography can provide key information that other methods cannot offer. Conductive coatings have proved to be an effective way for biological samples, and nonconductive samples in general, to be analyzed using voltage-pulsed atom probe tomography. In this study, we analyzed the effects of graphene coating on an electrically conductive material and were able to confirm the detection of carbon atoms. We compare quantitative electrostatic field metrics for a single-coated and a multi-coated specimen and measure both a reduced voltage after graphene coating and lowered charge-state ratios for different ion species, suggesting a lowered evaporation field related to the graphene coating. This information will be instructive for future studies on graphene-coated, nonconductive biological specimens.</description><identifier>ISSN: 1431-9276</identifier><identifier>EISSN: 1435-8115</identifier><identifier>DOI: 10.1017/S1431927621012356</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Biological effects ; Biological properties ; Biological samples ; Coatings ; Data analysis ; Development and Computation ; Electric fields ; Electric potential ; Electrostatic properties ; Evaporation ; Graphene ; Lasers ; Tomography ; Voltage</subject><ispartof>Microscopy and microanalysis, 2022-08, Vol.28 (4), p.1054-1065</ispartof><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-765ecd13e693c70a55db96a5ac13b6d453086d9f06b343ac05d8dbba240c2703</citedby><cites>FETCH-LOGICAL-c247t-765ecd13e693c70a55db96a5ac13b6d453086d9f06b343ac05d8dbba240c2703</cites><orcidid>0000-0003-3612-8762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Exertier, Florant</creatorcontrib><creatorcontrib>Wang, Jiangting</creatorcontrib><creatorcontrib>Fu, Jing</creatorcontrib><creatorcontrib>Marceau, Ross K.W.</creatorcontrib><title>Understanding the Effects of Graphene Coating on the Electrostatic Field at the Tip of an Atom Probe Tomography Specimen</title><title>Microscopy and microanalysis</title><addtitle>Microsc Microanal</addtitle><description>As a three-dimensional characterization method, atom probe tomography can provide key information that other methods cannot offer. Conductive coatings have proved to be an effective way for biological samples, and nonconductive samples in general, to be analyzed using voltage-pulsed atom probe tomography. In this study, we analyzed the effects of graphene coating on an electrically conductive material and were able to confirm the detection of carbon atoms. We compare quantitative electrostatic field metrics for a single-coated and a multi-coated specimen and measure both a reduced voltage after graphene coating and lowered charge-state ratios for different ion species, suggesting a lowered evaporation field related to the graphene coating. This information will be instructive for future studies on graphene-coated, nonconductive biological specimens.</description><subject>Biological effects</subject><subject>Biological properties</subject><subject>Biological samples</subject><subject>Coatings</subject><subject>Data analysis</subject><subject>Development and Computation</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electrostatic properties</subject><subject>Evaporation</subject><subject>Graphene</subject><subject>Lasers</subject><subject>Tomography</subject><subject>Voltage</subject><issn>1431-9276</issn><issn>1435-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wgek8zMspS2CgWF1vWQ17QpnWTMpGD_vZm24EJc5eae853LvQA8YvSMES5eVjinuCIFJ-lLKONXYJRaLCsxZtenGmeDfgvu-n6HEKKo4CPw_em0CX0UTlu3gXFr4KxpjIo99A1cBNFtjTNw6kUcdO_Oln1yBJ-waBWcW7PXUMSTtLbdQAoHJ9G38CN4mZq-9Zsh6whXnVG2Ne4e3DRi35uHyzsG6_lsPX3Nlu-Lt-lkmSmSFzErODNKY2p4RVWBBGNaVlwwoTCVXOeMopLrqkFc0pwKhZgutZSC5EiRAtExeDrHdsF_HUwf650_BJcm1oSXrKIlZXly4bNLpaX6YJq6C7YV4VhjVA_3rf_cNzH0wohWBqs35jf6f-oHWoJ8oA</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Exertier, Florant</creator><creator>Wang, Jiangting</creator><creator>Fu, Jing</creator><creator>Marceau, Ross K.W.</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-3612-8762</orcidid></search><sort><creationdate>202208</creationdate><title>Understanding the Effects of Graphene Coating on the Electrostatic Field at the Tip of an Atom Probe Tomography Specimen</title><author>Exertier, Florant ; Wang, Jiangting ; Fu, Jing ; Marceau, Ross K.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-765ecd13e693c70a55db96a5ac13b6d453086d9f06b343ac05d8dbba240c2703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological effects</topic><topic>Biological properties</topic><topic>Biological samples</topic><topic>Coatings</topic><topic>Data analysis</topic><topic>Development and Computation</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electrostatic properties</topic><topic>Evaporation</topic><topic>Graphene</topic><topic>Lasers</topic><topic>Tomography</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Exertier, Florant</creatorcontrib><creatorcontrib>Wang, Jiangting</creatorcontrib><creatorcontrib>Fu, Jing</creatorcontrib><creatorcontrib>Marceau, Ross K.W.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Microscopy and microanalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Exertier, Florant</au><au>Wang, Jiangting</au><au>Fu, Jing</au><au>Marceau, Ross K.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Effects of Graphene Coating on the Electrostatic Field at the Tip of an Atom Probe Tomography Specimen</atitle><jtitle>Microscopy and microanalysis</jtitle><addtitle>Microsc Microanal</addtitle><date>2022-08</date><risdate>2022</risdate><volume>28</volume><issue>4</issue><spage>1054</spage><epage>1065</epage><pages>1054-1065</pages><issn>1431-9276</issn><eissn>1435-8115</eissn><abstract>As a three-dimensional characterization method, atom probe tomography can provide key information that other methods cannot offer. Conductive coatings have proved to be an effective way for biological samples, and nonconductive samples in general, to be analyzed using voltage-pulsed atom probe tomography. In this study, we analyzed the effects of graphene coating on an electrically conductive material and were able to confirm the detection of carbon atoms. We compare quantitative electrostatic field metrics for a single-coated and a multi-coated specimen and measure both a reduced voltage after graphene coating and lowered charge-state ratios for different ion species, suggesting a lowered evaporation field related to the graphene coating. This information will be instructive for future studies on graphene-coated, nonconductive biological specimens.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S1431927621012356</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3612-8762</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1431-9276 |
ispartof | Microscopy and microanalysis, 2022-08, Vol.28 (4), p.1054-1065 |
issn | 1431-9276 1435-8115 |
language | eng |
recordid | cdi_proquest_journals_2685938354 |
source | Alma/SFX Local Collection |
subjects | Biological effects Biological properties Biological samples Coatings Data analysis Development and Computation Electric fields Electric potential Electrostatic properties Evaporation Graphene Lasers Tomography Voltage |
title | Understanding the Effects of Graphene Coating on the Electrostatic Field at the Tip of an Atom Probe Tomography Specimen |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Effects%20of%20Graphene%20Coating%20on%20the%20Electrostatic%20Field%20at%20the%20Tip%20of%20an%20Atom%20Probe%20Tomography%20Specimen&rft.jtitle=Microscopy%20and%20microanalysis&rft.au=Exertier,%20Florant&rft.date=2022-08&rft.volume=28&rft.issue=4&rft.spage=1054&rft.epage=1065&rft.pages=1054-1065&rft.issn=1431-9276&rft.eissn=1435-8115&rft_id=info:doi/10.1017/S1431927621012356&rft_dat=%3Cproquest_cross%3E2685938354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685938354&rft_id=info:pmid/&rft_cupid=10_1017_S1431927621012356&rfr_iscdi=true |