Understanding the Effects of Graphene Coating on the Electrostatic Field at the Tip of an Atom Probe Tomography Specimen

As a three-dimensional characterization method, atom probe tomography can provide key information that other methods cannot offer. Conductive coatings have proved to be an effective way for biological samples, and nonconductive samples in general, to be analyzed using voltage-pulsed atom probe tomog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy and microanalysis 2022-08, Vol.28 (4), p.1054-1065
Hauptverfasser: Exertier, Florant, Wang, Jiangting, Fu, Jing, Marceau, Ross K.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1065
container_issue 4
container_start_page 1054
container_title Microscopy and microanalysis
container_volume 28
creator Exertier, Florant
Wang, Jiangting
Fu, Jing
Marceau, Ross K.W.
description As a three-dimensional characterization method, atom probe tomography can provide key information that other methods cannot offer. Conductive coatings have proved to be an effective way for biological samples, and nonconductive samples in general, to be analyzed using voltage-pulsed atom probe tomography. In this study, we analyzed the effects of graphene coating on an electrically conductive material and were able to confirm the detection of carbon atoms. We compare quantitative electrostatic field metrics for a single-coated and a multi-coated specimen and measure both a reduced voltage after graphene coating and lowered charge-state ratios for different ion species, suggesting a lowered evaporation field related to the graphene coating. This information will be instructive for future studies on graphene-coated, nonconductive biological specimens.
doi_str_mv 10.1017/S1431927621012356
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2685938354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S1431927621012356</cupid><sourcerecordid>2685938354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-765ecd13e693c70a55db96a5ac13b6d453086d9f06b343ac05d8dbba240c2703</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wgek8zMspS2CgWF1vWQ17QpnWTMpGD_vZm24EJc5eae853LvQA8YvSMES5eVjinuCIFJ-lLKONXYJRaLCsxZtenGmeDfgvu-n6HEKKo4CPw_em0CX0UTlu3gXFr4KxpjIo99A1cBNFtjTNw6kUcdO_Oln1yBJ-waBWcW7PXUMSTtLbdQAoHJ9G38CN4mZq-9Zsh6whXnVG2Ne4e3DRi35uHyzsG6_lsPX3Nlu-Lt-lkmSmSFzErODNKY2p4RVWBBGNaVlwwoTCVXOeMopLrqkFc0pwKhZgutZSC5EiRAtExeDrHdsF_HUwf650_BJcm1oSXrKIlZXly4bNLpaX6YJq6C7YV4VhjVA_3rf_cNzH0wohWBqs35jf6f-oHWoJ8oA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2685938354</pqid></control><display><type>article</type><title>Understanding the Effects of Graphene Coating on the Electrostatic Field at the Tip of an Atom Probe Tomography Specimen</title><source>Alma/SFX Local Collection</source><creator>Exertier, Florant ; Wang, Jiangting ; Fu, Jing ; Marceau, Ross K.W.</creator><creatorcontrib>Exertier, Florant ; Wang, Jiangting ; Fu, Jing ; Marceau, Ross K.W.</creatorcontrib><description>As a three-dimensional characterization method, atom probe tomography can provide key information that other methods cannot offer. Conductive coatings have proved to be an effective way for biological samples, and nonconductive samples in general, to be analyzed using voltage-pulsed atom probe tomography. In this study, we analyzed the effects of graphene coating on an electrically conductive material and were able to confirm the detection of carbon atoms. We compare quantitative electrostatic field metrics for a single-coated and a multi-coated specimen and measure both a reduced voltage after graphene coating and lowered charge-state ratios for different ion species, suggesting a lowered evaporation field related to the graphene coating. This information will be instructive for future studies on graphene-coated, nonconductive biological specimens.</description><identifier>ISSN: 1431-9276</identifier><identifier>EISSN: 1435-8115</identifier><identifier>DOI: 10.1017/S1431927621012356</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Biological effects ; Biological properties ; Biological samples ; Coatings ; Data analysis ; Development and Computation ; Electric fields ; Electric potential ; Electrostatic properties ; Evaporation ; Graphene ; Lasers ; Tomography ; Voltage</subject><ispartof>Microscopy and microanalysis, 2022-08, Vol.28 (4), p.1054-1065</ispartof><rights>Copyright © The Author(s), 2021. Published by Cambridge University Press on behalf of the Microscopy Society of America</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c247t-765ecd13e693c70a55db96a5ac13b6d453086d9f06b343ac05d8dbba240c2703</citedby><cites>FETCH-LOGICAL-c247t-765ecd13e693c70a55db96a5ac13b6d453086d9f06b343ac05d8dbba240c2703</cites><orcidid>0000-0003-3612-8762</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Exertier, Florant</creatorcontrib><creatorcontrib>Wang, Jiangting</creatorcontrib><creatorcontrib>Fu, Jing</creatorcontrib><creatorcontrib>Marceau, Ross K.W.</creatorcontrib><title>Understanding the Effects of Graphene Coating on the Electrostatic Field at the Tip of an Atom Probe Tomography Specimen</title><title>Microscopy and microanalysis</title><addtitle>Microsc Microanal</addtitle><description>As a three-dimensional characterization method, atom probe tomography can provide key information that other methods cannot offer. Conductive coatings have proved to be an effective way for biological samples, and nonconductive samples in general, to be analyzed using voltage-pulsed atom probe tomography. In this study, we analyzed the effects of graphene coating on an electrically conductive material and were able to confirm the detection of carbon atoms. We compare quantitative electrostatic field metrics for a single-coated and a multi-coated specimen and measure both a reduced voltage after graphene coating and lowered charge-state ratios for different ion species, suggesting a lowered evaporation field related to the graphene coating. This information will be instructive for future studies on graphene-coated, nonconductive biological specimens.</description><subject>Biological effects</subject><subject>Biological properties</subject><subject>Biological samples</subject><subject>Coatings</subject><subject>Data analysis</subject><subject>Development and Computation</subject><subject>Electric fields</subject><subject>Electric potential</subject><subject>Electrostatic properties</subject><subject>Evaporation</subject><subject>Graphene</subject><subject>Lasers</subject><subject>Tomography</subject><subject>Voltage</subject><issn>1431-9276</issn><issn>1435-8115</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp1kEtLAzEUhYMoWKs_wF3A9Wgek8zMspS2CgWF1vWQ17QpnWTMpGD_vZm24EJc5eae853LvQA8YvSMES5eVjinuCIFJ-lLKONXYJRaLCsxZtenGmeDfgvu-n6HEKKo4CPw_em0CX0UTlu3gXFr4KxpjIo99A1cBNFtjTNw6kUcdO_Oln1yBJ-waBWcW7PXUMSTtLbdQAoHJ9G38CN4mZq-9Zsh6whXnVG2Ne4e3DRi35uHyzsG6_lsPX3Nlu-Lt-lkmSmSFzErODNKY2p4RVWBBGNaVlwwoTCVXOeMopLrqkFc0pwKhZgutZSC5EiRAtExeDrHdsF_HUwf650_BJcm1oSXrKIlZXly4bNLpaX6YJq6C7YV4VhjVA_3rf_cNzH0wohWBqs35jf6f-oHWoJ8oA</recordid><startdate>202208</startdate><enddate>202208</enddate><creator>Exertier, Florant</creator><creator>Wang, Jiangting</creator><creator>Fu, Jing</creator><creator>Marceau, Ross K.W.</creator><general>Cambridge University Press</general><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-3612-8762</orcidid></search><sort><creationdate>202208</creationdate><title>Understanding the Effects of Graphene Coating on the Electrostatic Field at the Tip of an Atom Probe Tomography Specimen</title><author>Exertier, Florant ; Wang, Jiangting ; Fu, Jing ; Marceau, Ross K.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-765ecd13e693c70a55db96a5ac13b6d453086d9f06b343ac05d8dbba240c2703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Biological effects</topic><topic>Biological properties</topic><topic>Biological samples</topic><topic>Coatings</topic><topic>Data analysis</topic><topic>Development and Computation</topic><topic>Electric fields</topic><topic>Electric potential</topic><topic>Electrostatic properties</topic><topic>Evaporation</topic><topic>Graphene</topic><topic>Lasers</topic><topic>Tomography</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Exertier, Florant</creatorcontrib><creatorcontrib>Wang, Jiangting</creatorcontrib><creatorcontrib>Fu, Jing</creatorcontrib><creatorcontrib>Marceau, Ross K.W.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Microscopy and microanalysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Exertier, Florant</au><au>Wang, Jiangting</au><au>Fu, Jing</au><au>Marceau, Ross K.W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Understanding the Effects of Graphene Coating on the Electrostatic Field at the Tip of an Atom Probe Tomography Specimen</atitle><jtitle>Microscopy and microanalysis</jtitle><addtitle>Microsc Microanal</addtitle><date>2022-08</date><risdate>2022</risdate><volume>28</volume><issue>4</issue><spage>1054</spage><epage>1065</epage><pages>1054-1065</pages><issn>1431-9276</issn><eissn>1435-8115</eissn><abstract>As a three-dimensional characterization method, atom probe tomography can provide key information that other methods cannot offer. Conductive coatings have proved to be an effective way for biological samples, and nonconductive samples in general, to be analyzed using voltage-pulsed atom probe tomography. In this study, we analyzed the effects of graphene coating on an electrically conductive material and were able to confirm the detection of carbon atoms. We compare quantitative electrostatic field metrics for a single-coated and a multi-coated specimen and measure both a reduced voltage after graphene coating and lowered charge-state ratios for different ion species, suggesting a lowered evaporation field related to the graphene coating. This information will be instructive for future studies on graphene-coated, nonconductive biological specimens.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><doi>10.1017/S1431927621012356</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3612-8762</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1431-9276
ispartof Microscopy and microanalysis, 2022-08, Vol.28 (4), p.1054-1065
issn 1431-9276
1435-8115
language eng
recordid cdi_proquest_journals_2685938354
source Alma/SFX Local Collection
subjects Biological effects
Biological properties
Biological samples
Coatings
Data analysis
Development and Computation
Electric fields
Electric potential
Electrostatic properties
Evaporation
Graphene
Lasers
Tomography
Voltage
title Understanding the Effects of Graphene Coating on the Electrostatic Field at the Tip of an Atom Probe Tomography Specimen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T09%3A48%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Understanding%20the%20Effects%20of%20Graphene%20Coating%20on%20the%20Electrostatic%20Field%20at%20the%20Tip%20of%20an%20Atom%20Probe%20Tomography%20Specimen&rft.jtitle=Microscopy%20and%20microanalysis&rft.au=Exertier,%20Florant&rft.date=2022-08&rft.volume=28&rft.issue=4&rft.spage=1054&rft.epage=1065&rft.pages=1054-1065&rft.issn=1431-9276&rft.eissn=1435-8115&rft_id=info:doi/10.1017/S1431927621012356&rft_dat=%3Cproquest_cross%3E2685938354%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2685938354&rft_id=info:pmid/&rft_cupid=10_1017_S1431927621012356&rfr_iscdi=true