Understanding the Effects of Graphene Coating on the Electrostatic Field at the Tip of an Atom Probe Tomography Specimen
As a three-dimensional characterization method, atom probe tomography can provide key information that other methods cannot offer. Conductive coatings have proved to be an effective way for biological samples, and nonconductive samples in general, to be analyzed using voltage-pulsed atom probe tomog...
Gespeichert in:
Veröffentlicht in: | Microscopy and microanalysis 2022-08, Vol.28 (4), p.1054-1065 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | As a three-dimensional characterization method, atom probe tomography can provide key information that other methods cannot offer. Conductive coatings have proved to be an effective way for biological samples, and nonconductive samples in general, to be analyzed using voltage-pulsed atom probe tomography. In this study, we analyzed the effects of graphene coating on an electrically conductive material and were able to confirm the detection of carbon atoms. We compare quantitative electrostatic field metrics for a single-coated and a multi-coated specimen and measure both a reduced voltage after graphene coating and lowered charge-state ratios for different ion species, suggesting a lowered evaporation field related to the graphene coating. This information will be instructive for future studies on graphene-coated, nonconductive biological specimens. |
---|---|
ISSN: | 1431-9276 1435-8115 |
DOI: | 10.1017/S1431927621012356 |