Understanding the Effects of Graphene Coating on the Electrostatic Field at the Tip of an Atom Probe Tomography Specimen

As a three-dimensional characterization method, atom probe tomography can provide key information that other methods cannot offer. Conductive coatings have proved to be an effective way for biological samples, and nonconductive samples in general, to be analyzed using voltage-pulsed atom probe tomog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy and microanalysis 2022-08, Vol.28 (4), p.1054-1065
Hauptverfasser: Exertier, Florant, Wang, Jiangting, Fu, Jing, Marceau, Ross K.W.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:As a three-dimensional characterization method, atom probe tomography can provide key information that other methods cannot offer. Conductive coatings have proved to be an effective way for biological samples, and nonconductive samples in general, to be analyzed using voltage-pulsed atom probe tomography. In this study, we analyzed the effects of graphene coating on an electrically conductive material and were able to confirm the detection of carbon atoms. We compare quantitative electrostatic field metrics for a single-coated and a multi-coated specimen and measure both a reduced voltage after graphene coating and lowered charge-state ratios for different ion species, suggesting a lowered evaporation field related to the graphene coating. This information will be instructive for future studies on graphene-coated, nonconductive biological specimens.
ISSN:1431-9276
1435-8115
DOI:10.1017/S1431927621012356