The Stochastic Bilevel Continuous Knapsack Problem with Uncertain Follower’s Objective
We consider a bilevel continuous knapsack problem where the leader controls the capacity of the knapsack, while the follower chooses a feasible packing maximizing his own profit. The leader’s aim is to optimize a linear objective function in the capacity and in the follower’s solution, but with resp...
Gespeichert in:
Veröffentlicht in: | Journal of optimization theory and applications 2022-08, Vol.194 (2), p.521-542 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a bilevel continuous knapsack problem where the leader controls the capacity of the knapsack, while the follower chooses a feasible packing maximizing his own profit. The leader’s aim is to optimize a linear objective function in the capacity and in the follower’s solution, but with respect to different item values. We address a stochastic version of this problem where the follower’s profits are uncertain from the leader’s perspective, and only a probability distribution is known. Assuming that the leader aims at optimizing the expected value of her objective function, we first observe that the stochastic problem is tractable as long as the possible scenarios are given explicitly as part of the input, which also allows to deal with general distributions using a sample average approximation. For the case of independently and uniformly distributed item values, we show that the problem is #P-hard in general, and the same is true even for evaluating the leader’s objective function. Nevertheless, we present pseudo-polynomial time algorithms for this case, running in time linear in the total size of the items. Based on this, we derive an additive approximation scheme for the general case of independently distributed item values, which runs in pseudo-polynomial time. |
---|---|
ISSN: | 0022-3239 1573-2878 |
DOI: | 10.1007/s10957-022-02037-8 |