Commutativity of quantization and reduction for quiver representations

Given a finite quiver, its double may be viewed as its non-commutative “cotangent” space, and hence is a non-commutative symplectic space. Crawley-Boevey, Etingof and Ginzburg constructed the non-commutative reduction of this space while Schedler constructed its quantization. We show that the non-co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematische Zeitschrift 2022-08, Vol.301 (4), p.3525-3554
1. Verfasser: Zhao, Hu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Given a finite quiver, its double may be viewed as its non-commutative “cotangent” space, and hence is a non-commutative symplectic space. Crawley-Boevey, Etingof and Ginzburg constructed the non-commutative reduction of this space while Schedler constructed its quantization. We show that the non-commutative quantization and reduction commute with each other. Via the quantum and classical trace maps, such a commutativity induces the commutativity of the quantization and reduction on the space of quiver representations.
ISSN:0025-5874
1432-1823
DOI:10.1007/s00209-022-03028-1