Enhancing the Erdős‐Lovász Tihany Conjecture for line graphs of multigraphs
In this paper, we prove an enhanced version of the Erdős‐Lovász Tihany Conjecture for line graphs of multigraphs. That is, for every line graph G $G$ whose chromatic number χ(G) $\chi (G)$ is more than its clique number ω(G) $\omega (G)$ and for any nonnegative integer ℓ $\ell $, any two integers s,...
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2022-09, Vol.101 (1), p.134-141 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we prove an enhanced version of the Erdős‐Lovász Tihany Conjecture for line graphs of multigraphs. That is, for every line graph G $G$ whose chromatic number χ(G) $\chi (G)$ is more than its clique number ω(G) $\omega (G)$ and for any nonnegative integer ℓ $\ell $, any two integers s,t≥
3.5ℓ+
2 $s,t\ge 3.5\ell +2$ with s+t=χ(G)+1 $s+t=\chi (G)+1$, there is a partition (S,T
) $(S,T)$ of the vertex set V(G) $V(G)$ such that χ(G[S])≥s $\chi (G[S])\ge s$ and χ(G[T])≥t+ℓ $\chi (G[T])\ge t+\ell $. In particular, when ℓ=1 $\ell =1$, we can obtain the same result just for any s,t≥4 $s,t\ge 4$. The Erdős‐Lovász Tihany conjecture for line graphs is a special case when ℓ=0 $\ell =0$. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22816 |