Analyzing the effects of pad asperity on chemical mechanical polishing of copper thin film wafer

Copper thin film has been identified as a promising material for multi-level interconnecting materials in IC fabrication due to its unique electrical properties and high electrical conductivity. However, it is very challenging to manufacture a superior planar surface with low dishing and minimal ero...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Japanese Journal of Applied Physics 2022-07, Vol.61 (7), p.71005
Hauptverfasser: Quoc Huy, Le Nam, Lin, Chun-Yu, Chen, Chao-Chang A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Copper thin film has been identified as a promising material for multi-level interconnecting materials in IC fabrication due to its unique electrical properties and high electrical conductivity. However, it is very challenging to manufacture a superior planar surface with low dishing and minimal erosion of copper thin film in the chemical mechanical polishing (CMP) process. In this study, the micro-topography model of a soft polishing pad is performed using an X-ray micro-computed tomography scan combined with finite element method simulation to evaluate the contact area between the CMP pad and wafer during the CMP process. Additionally, the material removal rate (MRR) model for the copper wafer is calibrated based on the wear of the material between abrasive particles and the wafer surface. The results of this study not only investigate the effect of CMP pad asperities during the CMP process but also provide a new method for fully calibrating MRR in comparison with CMP experiments for the verification of model parameters.
ISSN:0021-4922
1347-4065
DOI:10.35848/1347-4065/ac78b2