Large scale tensor regression using kernels and variational inference

We outline an inherent flaw of tensor factorization models when latent factors are expressed as a function of side information and propose a novel method to mitigate this. We coin our methodology kernel fried tensor (KFT) and present it as a large-scale prediction and forecasting tool for high dimen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning 2022-07, Vol.111 (7), p.2663-2713
Hauptverfasser: Hu, Robert, Nicholls, Geoff K., Sejdinovic, Dino
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We outline an inherent flaw of tensor factorization models when latent factors are expressed as a function of side information and propose a novel method to mitigate this. We coin our methodology kernel fried tensor (KFT) and present it as a large-scale prediction and forecasting tool for high dimensional data. Our results show superior performance against LightGBM and Field aware factorization machines (FFM), two algorithms with proven track records, widely used in large-scale prediction. We also develop a variational inference framework for KFT which enables associating the predictions and forecasts with calibrated uncertainty estimates on several datasets.
ISSN:0885-6125
1573-0565
DOI:10.1007/s10994-021-06067-7