The discrete Chebyshev–Meckler–Mermin–Schwarz polynomials and spin algebra

The polynomials discovered by Chebyshev and subsequently related to spin transition probabilities by Meckler [Meckler, Phys. Rev. 111, 1447 (1958)] and Mermin and Schwarz [Found. Phys. 12, 101 (1982)] are studied, and their application to phase space representations of spin states and operators is e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2022-07, Vol.63 (7), p.72101
1. Verfasser: Garg, Anupam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page 72101
container_title Journal of mathematical physics
container_volume 63
creator Garg, Anupam
description The polynomials discovered by Chebyshev and subsequently related to spin transition probabilities by Meckler [Meckler, Phys. Rev. 111, 1447 (1958)] and Mermin and Schwarz [Found. Phys. 12, 101 (1982)] are studied, and their application to phase space representations of spin states and operators is examined. In particular, a formula relating the end-point value of the polynomials to scale factors relating different phase space representations of spherical harmonic operators is found. This formula is applied to illustrative calculations of Wigner functions for a single spin and the singlet state of a pair of spins.
doi_str_mv 10.1063/5.0094575
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2684737626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2684737626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c217t-b9b10d5b71c882ac9421e11bc6a99998117b724893e9fc5e78342ccbe71827833</originalsourceid><addsrcrecordid>eNp9kM9Kw0AQxhdRsFYPvkHAk0LqzubPbo5S_AcVBet52d1MTGqaxN20Uk--g2_ok7jaogfBucw3w49vho-QQ6AjoGl0mowozeKEJ1tkAFRkIU8TsU0GlDIWsliIXbLn3IxSABHHA3I3LTHIK2cs9hiMS9QrV-Ly4-39Bs1TjfZb2XnVeHFvyhdlX4OurVdNO69U7QLV5IHrqiZQ9SNqq_bJTuH3eLDpQ_JwcT4dX4WT28vr8dkkNAx4H-pMA80TzcEIwZTJYgYIoE2qMl8CgGvu_80izAqTIBdRzIzRyEEwP0RDcrT27Wz7vEDXy1m7sI0_KVkqYh7xlKWeOl5TxrbOWSxkZ6u5sisJVH4FJhO5CcyzJ2vWmapXfdU2P_Cytb-g7PLiP_iv8ycz-Xuh</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2684737626</pqid></control><display><type>article</type><title>The discrete Chebyshev–Meckler–Mermin–Schwarz polynomials and spin algebra</title><source>AIP Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Garg, Anupam</creator><creatorcontrib>Garg, Anupam</creatorcontrib><description>The polynomials discovered by Chebyshev and subsequently related to spin transition probabilities by Meckler [Meckler, Phys. Rev. 111, 1447 (1958)] and Mermin and Schwarz [Found. Phys. 12, 101 (1982)] are studied, and their application to phase space representations of spin states and operators is examined. In particular, a formula relating the end-point value of the polynomials to scale factors relating different phase space representations of spherical harmonic operators is found. This formula is applied to illustrative calculations of Wigner functions for a single spin and the singlet state of a pair of spins.</description><identifier>ISSN: 0022-2488</identifier><identifier>EISSN: 1089-7658</identifier><identifier>DOI: 10.1063/5.0094575</identifier><identifier>CODEN: JMAPAQ</identifier><language>eng</language><publisher>New York: American Institute of Physics</publisher><subject>Chebyshev approximation ; Mathematical analysis ; Operators (mathematics) ; Physics ; Polynomials ; Representations ; Spherical harmonics ; Spin transition ; Transition probabilities</subject><ispartof>Journal of mathematical physics, 2022-07, Vol.63 (7), p.72101</ispartof><rights>Author(s)</rights><rights>2022 Author(s). Published under an exclusive license by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c217t-b9b10d5b71c882ac9421e11bc6a99998117b724893e9fc5e78342ccbe71827833</cites><orcidid>0000-0002-3620-7631</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/jmp/article-lookup/doi/10.1063/5.0094575$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>314,776,780,790,4498,27901,27902,76353</link.rule.ids></links><search><creatorcontrib>Garg, Anupam</creatorcontrib><title>The discrete Chebyshev–Meckler–Mermin–Schwarz polynomials and spin algebra</title><title>Journal of mathematical physics</title><description>The polynomials discovered by Chebyshev and subsequently related to spin transition probabilities by Meckler [Meckler, Phys. Rev. 111, 1447 (1958)] and Mermin and Schwarz [Found. Phys. 12, 101 (1982)] are studied, and their application to phase space representations of spin states and operators is examined. In particular, a formula relating the end-point value of the polynomials to scale factors relating different phase space representations of spherical harmonic operators is found. This formula is applied to illustrative calculations of Wigner functions for a single spin and the singlet state of a pair of spins.</description><subject>Chebyshev approximation</subject><subject>Mathematical analysis</subject><subject>Operators (mathematics)</subject><subject>Physics</subject><subject>Polynomials</subject><subject>Representations</subject><subject>Spherical harmonics</subject><subject>Spin transition</subject><subject>Transition probabilities</subject><issn>0022-2488</issn><issn>1089-7658</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp9kM9Kw0AQxhdRsFYPvkHAk0LqzubPbo5S_AcVBet52d1MTGqaxN20Uk--g2_ok7jaogfBucw3w49vho-QQ6AjoGl0mowozeKEJ1tkAFRkIU8TsU0GlDIWsliIXbLn3IxSABHHA3I3LTHIK2cs9hiMS9QrV-Ly4-39Bs1TjfZb2XnVeHFvyhdlX4OurVdNO69U7QLV5IHrqiZQ9SNqq_bJTuH3eLDpQ_JwcT4dX4WT28vr8dkkNAx4H-pMA80TzcEIwZTJYgYIoE2qMl8CgGvu_80izAqTIBdRzIzRyEEwP0RDcrT27Wz7vEDXy1m7sI0_KVkqYh7xlKWeOl5TxrbOWSxkZ6u5sisJVH4FJhO5CcyzJ2vWmapXfdU2P_Cytb-g7PLiP_iv8ycz-Xuh</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Garg, Anupam</creator><general>American Institute of Physics</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3620-7631</orcidid></search><sort><creationdate>20220701</creationdate><title>The discrete Chebyshev–Meckler–Mermin–Schwarz polynomials and spin algebra</title><author>Garg, Anupam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c217t-b9b10d5b71c882ac9421e11bc6a99998117b724893e9fc5e78342ccbe71827833</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Chebyshev approximation</topic><topic>Mathematical analysis</topic><topic>Operators (mathematics)</topic><topic>Physics</topic><topic>Polynomials</topic><topic>Representations</topic><topic>Spherical harmonics</topic><topic>Spin transition</topic><topic>Transition probabilities</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garg, Anupam</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of mathematical physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garg, Anupam</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The discrete Chebyshev–Meckler–Mermin–Schwarz polynomials and spin algebra</atitle><jtitle>Journal of mathematical physics</jtitle><date>2022-07-01</date><risdate>2022</risdate><volume>63</volume><issue>7</issue><spage>72101</spage><pages>72101-</pages><issn>0022-2488</issn><eissn>1089-7658</eissn><coden>JMAPAQ</coden><abstract>The polynomials discovered by Chebyshev and subsequently related to spin transition probabilities by Meckler [Meckler, Phys. Rev. 111, 1447 (1958)] and Mermin and Schwarz [Found. Phys. 12, 101 (1982)] are studied, and their application to phase space representations of spin states and operators is examined. In particular, a formula relating the end-point value of the polynomials to scale factors relating different phase space representations of spherical harmonic operators is found. This formula is applied to illustrative calculations of Wigner functions for a single spin and the singlet state of a pair of spins.</abstract><cop>New York</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0094575</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3620-7631</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2488
ispartof Journal of mathematical physics, 2022-07, Vol.63 (7), p.72101
issn 0022-2488
1089-7658
language eng
recordid cdi_proquest_journals_2684737626
source AIP Journals Complete; Alma/SFX Local Collection
subjects Chebyshev approximation
Mathematical analysis
Operators (mathematics)
Physics
Polynomials
Representations
Spherical harmonics
Spin transition
Transition probabilities
title The discrete Chebyshev–Meckler–Mermin–Schwarz polynomials and spin algebra
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T01%3A24%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20discrete%20Chebyshev%E2%80%93Meckler%E2%80%93Mermin%E2%80%93Schwarz%20polynomials%20and%20spin%20algebra&rft.jtitle=Journal%20of%20mathematical%20physics&rft.au=Garg,%20Anupam&rft.date=2022-07-01&rft.volume=63&rft.issue=7&rft.spage=72101&rft.pages=72101-&rft.issn=0022-2488&rft.eissn=1089-7658&rft.coden=JMAPAQ&rft_id=info:doi/10.1063/5.0094575&rft_dat=%3Cproquest_cross%3E2684737626%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2684737626&rft_id=info:pmid/&rfr_iscdi=true