The discrete Chebyshev–Meckler–Mermin–Schwarz polynomials and spin algebra

The polynomials discovered by Chebyshev and subsequently related to spin transition probabilities by Meckler [Meckler, Phys. Rev. 111, 1447 (1958)] and Mermin and Schwarz [Found. Phys. 12, 101 (1982)] are studied, and their application to phase space representations of spin states and operators is e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematical physics 2022-07, Vol.63 (7), p.72101
1. Verfasser: Garg, Anupam
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The polynomials discovered by Chebyshev and subsequently related to spin transition probabilities by Meckler [Meckler, Phys. Rev. 111, 1447 (1958)] and Mermin and Schwarz [Found. Phys. 12, 101 (1982)] are studied, and their application to phase space representations of spin states and operators is examined. In particular, a formula relating the end-point value of the polynomials to scale factors relating different phase space representations of spherical harmonic operators is found. This formula is applied to illustrative calculations of Wigner functions for a single spin and the singlet state of a pair of spins.
ISSN:0022-2488
1089-7658
DOI:10.1063/5.0094575