Research on Application of High-Frequency Pulse Vibration in Ship Electric Propulsion System
Aiming at the problems existing in the method of using sensors to detect the rotor position of marine main propulsion motor at low speed, a sensorless rotor position identification method based on high-frequency pulse vibration signal is proposed. In this method, the low-pass filter is used to separ...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2022-06, Vol.2022, p.1-10 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Aiming at the problems existing in the method of using sensors to detect the rotor position of marine main propulsion motor at low speed, a sensorless rotor position identification method based on high-frequency pulse vibration signal is proposed. In this method, the low-pass filter is used to separate the high-frequency signal component, and the current component of d-axis to q-axis is demodulated. The control mode of PI action law is used to phase-locked processing of the demodulated signal, in which purpose is to obtain the rotor position signal. The design method is simulated and verified by MATLAB/Simulink software. The error between the estimated position and the actual position of the rotor in the simulation waveform is small, and the accuracy is high. The simulation results show that this method can achieve good results when applied to the ship electric propulsion system without position sensor, which provides a theoretical reference for the design of marine main propulsion motor control system. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2022/5504432 |