Characteristics and particle flow simulation of failure mechanism of Ludaping landslide in Renhuai red bed area, China

The purpose of this study was to reveal the characteristics and failure mechanism of an accumulation landslide (the Ludaping landslide) in the red beds of Maotai Town, Renhuai City, China, on June 12, 2015. Based on high-resolution digital orthophoto map (DOM) and digital elevation model (DEM) data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arabian journal of geosciences 2022-07, Vol.15 (14), Article 1237
Hauptverfasser: Yang, Genlan, Qin, Yigen, Jiang, Wenjie, Liang, Feng, Xiang, Xiqiong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The purpose of this study was to reveal the characteristics and failure mechanism of an accumulation landslide (the Ludaping landslide) in the red beds of Maotai Town, Renhuai City, China, on June 12, 2015. Based on high-resolution digital orthophoto map (DOM) and digital elevation model (DEM) data obtained by an unmanned aerial vehicle (UAV) survey, terrain reconstruction was conducted before and after the landslide, and the basic characteristics and scale of the landslide were analyzed. A 3D particle flow program was used to simulate the landslide motion process and failure mechanism. The results show that the Ludaping landslide is a typical red bed accumulation landslide, with a normal projection area of 96,710 m 2 . The slide source area and deposit area have volumes of 36,104 m 3 and 78,104 m 3 , respectively. The numerical simulation results show that the entire sliding process is approximately 90 s, and the main sliding time is approximately 70 s. The maximum average velocity is 7.3 m/s, and the average sliding displacement is 71.7 m. The simulation is consistent with the actual situation. The unfavorable geological foundation is formed by the slope’s adverse rock and soil structural combination. The tension of the middle slope body gradually increases during artificial excavation, and the back edge is strained and fractured. The middle and front slope bodies are sheared and unstable along the slope foot after significant rains. Following the instability of the middle front slope, the stress concentration of the middle and rear sliding slope toes, combined with rainfall and infiltration of the back pond on the weakening of the physical strength of rock and soil in the interface between the base and cover, and the overall instability, the enormous thrust force works on the front and middle slopes, causing them to slip twice. The research results have an important reference value for analyzing and identifying similar landslides in the red bed area.
ISSN:1866-7511
1866-7538
DOI:10.1007/s12517-022-10480-0