Application of chemostat culture to nutrient uptake rate measurements by the macroalgae Saccharina japonica var. religiosa (Phaeophyceae) and Ulva australis (Ulvophyceae)

SUMMARY In this study, we applied a chemostat culture method, for the first time, to measure the nutrient uptake rate of macroalgae. We examined two methods of measuring the nutrient uptake rate of two macroalgae, Saccharina japonica var. religiosa and Ulva australis, by comparing nutrient uptake ki...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Phycological research 2022-07, Vol.70 (3), p.142-150
Hauptverfasser: Okazaki, Ryosuke, Teramoto, Narumi, Carlson, Andrew K., Nakanishi, Kiyoko, Kudo, Isao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:SUMMARY In this study, we applied a chemostat culture method, for the first time, to measure the nutrient uptake rate of macroalgae. We examined two methods of measuring the nutrient uptake rate of two macroalgae, Saccharina japonica var. religiosa and Ulva australis, by comparing nutrient uptake kinetics between the chemostat culture and batch culture. In the chemostat culture, the nutrient concentration was kept constant by monitoring the change in nutrient concentration using an Auto Analyzer in real time and adding nutrients to compensate for the macroalgae's nutrient consumption. The nutrient uptake in the chemostat culture could be best fitted to the Michaelis–Menten saturation kinetics. In the batch culture, the nutrient concentration decreased with time, either constantly or exponentially due to a rapid uptake of nutrients by the macroalgae. The nutrient uptake rate in the batch culture generally showed a scattered relationship with nutrient concentration, with a weak fitting to the Michaelis–Menten saturation kinetics. This discrepancy seemed to be partly because the change in nutrient concentration was large between the sampling intervals in the batch culture. Determining an appropriate sampling interval for detectable concentration change is difficult unless the nutrient concentration is measured in real time. Therefore, the application of the chemostat culture method to the measurement of the uptake rate by macroalgae could greatly improve our understanding of nutrient uptake kinetics.
ISSN:1322-0829
1440-1835
DOI:10.1111/pre.12483