Distributionally Robust and Multi-Objective Nonnegative Matrix Factorization

Nonnegative matrix factorization (NMF) is a linear dimensionality reduction technique for analyzing nonnegative data. A key aspect of NMF is the choice of the objective function that depends on the noise model (or statistics of the noise) assumed on the data. In many applications, the noise model is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 2022-08, Vol.44 (8), p.4052-4064
Hauptverfasser: Gillis, Nicolas, Hien, Le Thi Khanh, Leplat, Valentin, Tan, Vincent Y. F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Nonnegative matrix factorization (NMF) is a linear dimensionality reduction technique for analyzing nonnegative data. A key aspect of NMF is the choice of the objective function that depends on the noise model (or statistics of the noise) assumed on the data. In many applications, the noise model is unknown and difficult to estimate. In this paper, we define a multi-objective NMF (MO-NMF) problem, where several objectives are combined within the same NMF model. We propose to use Lagrange duality to judiciously optimize for a set of weights to be used within the framework of the weighted-sum approach, that is, we minimize a single objective function which is a weighted sum of the all objective functions. We design a simple algorithm based on multiplicative updates to minimize this weighted sum. We show how this can be used to find distributionally robust NMF (DR-NMF) solutions, that is, solutions that minimize the largest error among all objectives, using a dual approach solved via a heuristic inspired from the Frank-Wolfe algorithm. We illustrate the effectiveness of this approach on synthetic, document and audio data sets. The results show that DR-NMF is robust to our incognizance of the noise model of the NMF problem.
ISSN:0162-8828
1939-3539
2160-9292
DOI:10.1109/TPAMI.2021.3058693