The structuring effect of a Gottlieb element on the Sullivan minimal model of a space
We show a Gottlieb element in the rational homotopy of a simply connected space \(X\) implies a structural result for the Sullivan minimal model, with different results depending on parity. In the even-degree case, we prove a rational Gottlieb element is a terminal homotopy element. This fact allows...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-06 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show a Gottlieb element in the rational homotopy of a simply connected space \(X\) implies a structural result for the Sullivan minimal model, with different results depending on parity. In the even-degree case, we prove a rational Gottlieb element is a terminal homotopy element. This fact allows us to complete an argument of Dupont to prove an even-degree Gottlieb element gives a free factor in the rational cohomology of a formal space of finite type. We apply the odd-degree result to affirm a special case of the \(2N\)-conjecture on Gottlieb elements of a finite complex. We combine our results to make a contribution to the realization problem for the classifying space \(B\mathrm{aut}_1(X)\). We prove a simply connected space \(X\) satisfying \(B\mathrm{aut}_1(X_{\mathbb{Q}}) \simeq S_{\mathbb{Q}}^{2n}\) must have infinite-dimensional rational homotopy and vanishing rational Gottlieb elements above degree \(2n-1\) for \(n= 1, 2, 3.\) |
---|---|
ISSN: | 2331-8422 |