The Mutual Visibility Problem for Fat Robots
Given a set of \(n \geq 1\) unit disk robots in the Euclidean plane, we consider the fundamental problem of providing mutual visibility to them: the robots must reposition themselves to reach a configuration where they all see each other. This problem arises under obstructed visibility, where a robo...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a set of \(n \geq 1\) unit disk robots in the Euclidean plane, we consider the fundamental problem of providing mutual visibility to them: the robots must reposition themselves to reach a configuration where they all see each other. This problem arises under obstructed visibility, where a robot cannot see another robot if there is a third robot on the straight line segment between them. This problem was solved by Sharma et al. [G. Sharma, R. Alsaedi, C. Busch, and S. Mukhopadhyay. The complete visibility problem for fat robots with lights. In Proceedings of the 19th International Conference on Distributed Computing and Networking, pages 1-4, 2018.] in the luminous robots model, where each robot is equipped with an externally visible light that can assume colors from a fixed set of colors, using 9 colors and \(O(n)\) rounds. In this work, we present an algorithm that requires only 2 colors and \(O(n)\) rounds. The number of colors is optimal since at least two colors are required for point robots [G.A. Di Luna, P. Flocchini, S.G. Chaudhuri, F. Poloni, N. Santoro, and G. Viglietta. Mutual visibility by luminous robots without collisions. Information and Computation, 254:392-418, 2017.]. |
---|---|
ISSN: | 2331-8422 |