Well-posedness and convergence results for the 3D-Lagrange Boussinesq-α system

In this paper, we study the three-dimensional Lagrangian averaged Boussinesq- α system which is a regularized version of the three-dimensional Boussinesq system. We prove the existence of a weak solution to the 3D-Lagrangian averaged Boussinesq- α system, in Sobolev spaces. Unlike preceding works, t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Archiv der Mathematik 2022-07, Vol.119 (1), p.89-100
Hauptverfasser: Sboui, Abir, Selmi, Ridha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the three-dimensional Lagrangian averaged Boussinesq- α system which is a regularized version of the three-dimensional Boussinesq system. We prove the existence of a weak solution to the 3D-Lagrangian averaged Boussinesq- α system, in Sobolev spaces. Unlike preceding works, this solution is global in time and depends continuously on the initial data, in particular, it is unique. More importantly, it converges to a weak solution of the three-dimensional Boussinesq system, as the regularizing parameter α vanishes.
ISSN:0003-889X
1420-8938
DOI:10.1007/s00013-022-01729-x