Well-posedness and convergence results for the 3D-Lagrange Boussinesq-α system
In this paper, we study the three-dimensional Lagrangian averaged Boussinesq- α system which is a regularized version of the three-dimensional Boussinesq system. We prove the existence of a weak solution to the 3D-Lagrangian averaged Boussinesq- α system, in Sobolev spaces. Unlike preceding works, t...
Gespeichert in:
Veröffentlicht in: | Archiv der Mathematik 2022-07, Vol.119 (1), p.89-100 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we study the three-dimensional Lagrangian averaged Boussinesq-
α
system which is a regularized version of the three-dimensional Boussinesq system. We prove the existence of a weak solution to the 3D-Lagrangian averaged Boussinesq-
α
system, in Sobolev spaces. Unlike preceding works, this solution is global in time and depends continuously on the initial data, in particular, it is unique. More importantly, it converges to a weak solution of the three-dimensional Boussinesq system, as the regularizing parameter
α
vanishes. |
---|---|
ISSN: | 0003-889X 1420-8938 |
DOI: | 10.1007/s00013-022-01729-x |