Multiple knapsack-constrained monotone DR-submodular maximization on distributive lattice
We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a distributive lattice is used to represent a dependency constraint, the problem can represent a dependency constrained version of a submodula...
Gespeichert in:
Veröffentlicht in: | Mathematical programming 2022-07, Vol.194 (1-2), p.85-119 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a problem of maximizing a monotone DR-submodular function under multiple order-consistent knapsack constraints on a distributive lattice. Because a distributive lattice is used to represent a dependency constraint, the problem can represent a dependency constrained version of a submodular maximization problem on a set. We propose a ( [Formula omitted])-approximation algorithm for this problem. To achieve this result, we generalize the continuous greedy algorithm to distributive lattices: We choose a median complex as a continuous relaxation of the distributive lattice and define the multilinear extension on it. We show that the median complex admits special curves, named uniform linear motions. The multilinear extension of a DR-submodular function is concave along a positive uniform linear motion, which is a key property used in the continuous greedy algorithm. |
---|---|
ISSN: | 0025-5610 1436-4646 |
DOI: | 10.1007/s10107-021-01620-7 |