Velocity-Free Adaptation Compensation Control of MEMS with Prescribed Performance
This study investigates the prescribed performance control problem for microelectro-mechanical system (MEMS) gyroscope subject to system parameters’ uncertainty. A finite-time observer is firstly designed to estimate the unmeasurable velocity state of MEMS gyroscope. Subsequently, a coordinate trans...
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2022-06, Vol.2022, p.1-11 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This study investigates the prescribed performance control problem for microelectro-mechanical system (MEMS) gyroscope subject to system parameters’ uncertainty. A finite-time observer is firstly designed to estimate the unmeasurable velocity state of MEMS gyroscope. Subsequently, a coordinate transformation with the performance function is introduced into an error system which will be kept bounded to ensure expected dynamic and steady-state responses. Based on the proposed finite time-velocity reconstruction system, the adaptive backstepping design procedure is further designed to deal with the lumped uncertainty term. Furthermore, when considering actuator saturation, an improved control strategy is developed with a nonlinear input updating law, and meanwhile, it is proved that the system error converges to a preset compact set around zero in a preassigned time. Simulation results show the effectiveness and reliability of the proposed methods. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2022/1499685 |