A Numerical Method for Solving Fractional Differential Equations

In this paper, we solve the fractional differential equations (FDEs) with boundary value conditions in Sobolev space Hn0,1. The strategy is constructing multiscale orthonormal basis for Hn0,1 to get the approximation for the problems. The convergence of the method is proved, and it is tested on some...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2022-06, Vol.2022, p.1-8
Hauptverfasser: Wang, Yahong, Zhou, Haili, Mei, Liangcai, Lin, Yingzhen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we solve the fractional differential equations (FDEs) with boundary value conditions in Sobolev space Hn0,1. The strategy is constructing multiscale orthonormal basis for Hn0,1 to get the approximation for the problems. The convergence of the method is proved, and it is tested on some numerical experiments; the tests show that our method is more efficient and accurate. The notion of numerical stability with respect to the condition number is introduced proving that the proposed method is numerically stable in this sense.
ISSN:1024-123X
1563-5147
DOI:10.1155/2022/3778016