Cataloguing MoSi\(_2\)N\(_4\) and WSi\(_2\)N\(_4\) van der Waals Heterostructures: An Exceptional Material Platform for Excitonic Solar Cell Applications
Two-dimensional (2D) materials van der Waals heterostructures (vdWHs) provides a revolutionary route towards high-performance solar energy conversion devices beyond the conventional silicon-based pn junction solar cells. Despite tremendous research progress accomplished in recent years, the searches...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2022-07 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two-dimensional (2D) materials van der Waals heterostructures (vdWHs) provides a revolutionary route towards high-performance solar energy conversion devices beyond the conventional silicon-based pn junction solar cells. Despite tremendous research progress accomplished in recent years, the searches of vdWHs with exceptional excitonic solar cell conversion efficiency and optical properties remain an open theoretical and experimental quest. Here we show that the vdWH family composed of MoSi\(_2\)N\(_4\) and WSi\(_2\)N\(_4\) monolayers provides a compelling material platform for developing high-performance ultrathin excitonic solar cells and photonics devices. Using first-principle calculations, we construct and classify 51 types of MoSi\(_2\)N\(_4\) and WSi\(_2\)N\(_4\)-based [(Mo,W)Si\(_2\)N\(_4\)] vdWHs composed of various metallic, semimetallic, semiconducting, insulating and topological 2D materials. Intriguingly, MoSi\(_2\)N\(_4\)/(InSe, WSe\(_2\)) are identified as Type-II vdWHs with exceptional excitonic solar cell power conversion efficiency reaching well over 20%, which are competitive to state-of-art silicon solar cells. The (Mo,W)Si\(_2\)N\(_4\) vdWH family exhibits strong optical absorption in both the visible and ultraviolet regimes. Exceedingly large peak ultraviolet absorptions over 40%, approaching the maximum absorption limit of a free-standing 2D material, can be achieved in (Mo,W)Si\(_2\)N\(_4\)/\(\alpha_2\)-(Mo,W)Ge\(_2\)P\(_4\) vdWHs. Our findings unravel the enormous potential of (Mo,W)Si\(_2\)N\(_4\) vdWHs in designing ultimately compact excitonic solar cell device technology. |
---|---|
ISSN: | 2331-8422 |