Porous Cationic Electrospun Fibers with Sufficient Adsorption Sites for Effective and Continuous 99TcO4− Uptake

Removal of radioactive technetium‐99 (99TcO4−) from water by effective adsorbents is highly desired but remains a challenge. The currently used resin adsorbents possess several obstacles, such as slow adsorption kinetics and low adsorption capacity. To address these issues, herein a type of fibrous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2022-06, Vol.32 (26), p.n/a
Hauptverfasser: Zhao, Rui, Chen, Dingyang, Gao, Nvwa, Yuan, Liyong, Hu, Wei, Cui, Fengchao, Tian, Yuyang, Shi, Weiqun, Ma, Shengqian, Zhu, Guangshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Removal of radioactive technetium‐99 (99TcO4−) from water by effective adsorbents is highly desired but remains a challenge. The currently used resin adsorbents possess several obstacles, such as slow adsorption kinetics and low adsorption capacity. To address these issues, herein a type of fibrous adsorbent with porosity and hyper‐branched quaternary ammonium groups, namely porous cationic electrospun fibers (PCE fibers), is successfully prepared. PCE fibers can remove 97% of 99TcO4− within 1 min and the equilibrium time of 99% removal is 20 min. The predicted maximum adsorption capacity toward the surrogate ReO4− can reach 826 mg g−1, which is higher than the state of art anion‐exchange resins and most of the other reported adsorbents. Furthermore, PCE fibers have good selectivity for ReO4− in the presence of competitive anions, and can retain ReO4− uptake under extreme conditions including high acid–base and gamma irradiation. Importantly, PCE fibrous adsorptive membrane is employed for dynamic ReO4− removal from simulated Hanford LAW stream with a processing capacity of 600 kg simulated stream per kilogram PCE fibers. The excellent performance highlights the advantages of PCE fibers over traditional resins in technetium removal. Cost‐efficient, high‐performance porous cationic electrospun fibers (PCE fibers) are designed for radioactive technetium‐99 removal from water. Owing to their fast mass transfer channels, sufficient available adsorption sites and good engineered form, the PCE fibers achieve effective 99TcO4−/ReO4− cleanup in both static and continuous conditions, superior to a series of materials.
ISSN:1616-301X
1616-3028
DOI:10.1002/adfm.202200618