On large-deviation probabilities for the empirical distribution of branching random walks with heavy tails
Given a branching random walk $(Z_n)_{n\geq0}$ on $\mathbb{R}$ , let $Z_n(A)$ be the number of particles located in interval A at generation n. It is well known that under some mild conditions, $Z_n(\sqrt nA)/Z_n(\mathbb{R})$ converges almost surely to $\nu(A)$ as $n\rightarrow\infty$ , where $\nu$...
Gespeichert in:
Veröffentlicht in: | Journal of applied probability 2022-06, Vol.59 (2), p.471-494 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a branching random walk
$(Z_n)_{n\geq0}$
on
$\mathbb{R}$
, let
$Z_n(A)$
be the number of particles located in interval A at generation n. It is well known that under some mild conditions,
$Z_n(\sqrt nA)/Z_n(\mathbb{R})$
converges almost surely to
$\nu(A)$
as
$n\rightarrow\infty$
, where
$\nu$
is the standard Gaussian measure. We investigate its large-deviation probabilities under the condition that the step size or offspring law has a heavy tail, i.e. a decay rate of
$\mathbb{P}(Z_n(\sqrt nA)/Z_n(\mathbb{R})>p)$
as
$n\rightarrow\infty$
, where
$p\in(\nu(A),1)$
. Our results complete those in Chen and He (2019) and Louidor and Perkins (2015). |
---|---|
ISSN: | 0021-9002 1475-6072 |
DOI: | 10.1017/jpr.2021.66 |