Preparation of a Novel Solid Phase Microextraction Fiber for Headspace GC-MS Analysis of Hazardous Odorants in Landfill Leachate

The practice of odorant analysis can often be very challenging because odorants are usually composed of a host of volatile organic compounds (VOCs) at low concentrations. Preconcentration with solid phase microextraction (SPME) is a conventional technique for the enrichment of these volatile compoun...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Processes 2022-06, Vol.10 (6), p.1045
Hauptverfasser: Yu, Zonghao, Yu, Ruipeng, Wu, Shengfang, Yu, Weijie, Song, Qijun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The practice of odorant analysis can often be very challenging because odorants are usually composed of a host of volatile organic compounds (VOCs) at low concentrations. Preconcentration with solid phase microextraction (SPME) is a conventional technique for the enrichment of these volatile compounds before analysis by headspace gas chromatography-mass spectrometry (GC-MS). However, commercially available SPME products usually bear the defects of weak mechanical strength and high cost. In this work, novel SPME fibers were prepared by a one-pot synthesis procedure from divinylbenzene (DVB), porous carbon powder (Carbon) and polydimethylsiloxane (PDMS). Factors that influence the extraction efficiency, such as extraction temperature, extraction time, salting effects, pH, stirring rate, desorption temperature and time, were optimized. VOCs in landfills pose a great threat to human health and the environment. The new SPME fibers were successfully applied in the analysis of VOCs from the leachate of a cyanobacteria landfill. Quantification methods of major odor contributors were established, and a good linearity (r > 0.998) was obtained, with detection limits in the range of 0.30–0.50 ng/L. Compared to commercial SPME fibers, the new material has higher extraction efficacy and higher precision. Hence, it is suitable for the determination of hazardous odorants of various sources.
ISSN:2227-9717
2227-9717
DOI:10.3390/pr10061045