Developing FRET Networks for Sensing

Förster resonance energy transfer (FRET) is a widely used fluorescence-based sensing mechanism. To date, most implementations of FRET sensors have relied on a discrete donor-acceptor pair for detection of each analytical target. FRET networks are an emerging concept in which target recognition pertu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Annual review of analytical chemistry (Palo Alto, Calif.) Calif.), 2022-06, Vol.15 (1), p.17-36
Hauptverfasser: Algar, W. Russ, Krause, Katherine D
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Förster resonance energy transfer (FRET) is a widely used fluorescence-based sensing mechanism. To date, most implementations of FRET sensors have relied on a discrete donor-acceptor pair for detection of each analytical target. FRET networks are an emerging concept in which target recognition perturbs a set of interconnected FRET pathways between multiple emitters. Here, we review the energy transfer topologies and scaffold materials for FRET networks, propose a general nomenclature, and qualitatively summarize the dynamics of the competitive, sequential, homoFRET, and heteroFRET pathways that constitute FRET networks. Implementations of FRET networks for sensing are also described, including concentric FRET probes, other single-vector multiplexing, and logic gates and switches. Unresolved questions and future research directions for current systems are discussed, as are potential but currently unexplored applications of FRET networks in sensing.
ISSN:1936-1327
1936-1335
DOI:10.1146/annurev-anchem-061020-014925