The vibro-acoustic analysis of a matching layer attached on a 1–3 piezoelectric composite transducer
A well-designed matching layer attached to a transducer is an effective method to obtain broad bandwidth. In practical applications, the optimal material parameters and geometric parameters for the matching layer are required to be calculated precisely. In this paper, we propose a fluid–structure in...
Gespeichert in:
Veröffentlicht in: | Journal of electroceramics 2022-04, Vol.48 (2), p.102-109 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A well-designed matching layer attached to a transducer is an effective method to obtain broad bandwidth. In practical applications, the optimal material parameters and geometric parameters for the matching layer are required to be calculated precisely. In this paper, we propose a fluid–structure interaction model for vibro-acoustic analysis of the transducer. An analytical solution to determine the electrical impedance of a transducer with a matching layer immersed in water is derived. The influence of matching layer on the performance of the transducer is demonstrated clearly. To verify the proposed model, a 1–3 piezoelectric composite transducer with a matching layer according to the our proposed model is fabricated. Consequently, the theoretical model we proposed can accurately predict the electrical impedance of the transducer with a matching layer. According to the model, the optimal thickness and acoustic impedance for the matching layer to expand the conductance bandwidth of the transducer can be figured out accurately. In addition, our proposed model also provides a reference for designing a transducer with a matching layer. |
---|---|
ISSN: | 1385-3449 1573-8663 |
DOI: | 10.1007/s10832-022-00277-8 |