Neighborhood search based improved bat algorithm for data clustering
Clustering is an unsupervised data analytic technique that can determine the similarity between data objects and put the similar data objects into one cluster. The similarity among data objects is determined through some distance function. It is observed that clustering technique gains wide populari...
Gespeichert in:
Veröffentlicht in: | Applied intelligence (Dordrecht, Netherlands) Netherlands), 2022-07, Vol.52 (9), p.10541-10575 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Clustering is an unsupervised data analytic technique that can determine the similarity between data objects and put the similar data objects into one cluster. The similarity among data objects is determined through some distance function. It is observed that clustering technique gains wide popularity due to its unsupervised and can be used in diverse research filed such as image segmentation, data analytics, outlier detection, and so on. This work focuses on the data clustering problems and proposes a new clustering algorithm based on the behavior of micro-bats. The proposed bat algorithm to determine the optimal cluster center for data clustering problems. It is also observed that several shortcomings are associated with bat algorithm such as slow convergence rate, local optima, and trade-off among search mechanisms. The slow convergence issue is addressed through an elitist mechanism. While an enhanced cooperative method is introduced for handling population initialization issues. In this work, a Q-learning based neighbourhood search mechanism is also developed to effectively overcome the local optima issue. Several benchmark non-healthcare and healthcare datasets are selected for evaluating the performance of the proposed bat algorithm. The simulation results are evaluated using intracluster distance, standard deviation, accuracy, and rand index parameters and compared with nineteen existing meta-heuristic algorithms. It is observed that the proposed bat algorithm obtains significant results with these datasets. |
---|---|
ISSN: | 0924-669X 1573-7497 |
DOI: | 10.1007/s10489-021-02934-x |