Physicochemical and Electrophysical Properties of a Composite Material Based on Carbon Nanofiber Produced from Coal Tar and Nanoiron
Experiments on the production of a nanocomposite material from coal tar obtained from coal of the Shubarkol deposit and nanoiron by electrospinning on a laboratory setup are presented. The elemental composition was determined, and the surface morphology of the test sample was studied. As a result of...
Gespeichert in:
Veröffentlicht in: | Solid fuel chemistry 2022, Vol.56 (3), p.171-180 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 180 |
---|---|
container_issue | 3 |
container_start_page | 171 |
container_title | Solid fuel chemistry |
container_volume | 56 |
creator | Yermagambet, B. T. Kazankapova, M. K. Kassenov, B. K. Kassenova, Zh. M. Nauryzbaeva, A. T. Kuanyshbekov, E. E. |
description | Experiments on the production of a nanocomposite material from coal tar obtained from coal of the Shubarkol deposit and nanoiron by electrospinning on a laboratory setup are presented. The elemental composition was determined, and the surface morphology of the test sample was studied. As a result of energy dispersive X-ray spectroscopy and SEM microscopy, the elemental composition (C, 92.14%; O, 6.16%; Al, 0.30%; Si, 0.26%; Р, 0.07%; S, 0.20%; Cl, 0.40%; and Fe, 0.47%) and the diameter of the carbon nanofiber, which ranged from 94.2 to 800.0 nm, were determined. The results of IR spectroscopy showed an increase in the intensity of peaks in a range of 2920–2850 cm
–1
and the appearance of a signal at 2359 cm
–1
, which was explained by the breaking of several chemical bonds in the sample structure and the formation of a composite with nanoiron. The electrical resistance (
R
), electrical capacitance (
C
), and permittivity (ε) of a carbonized sample were determined for the first time in a temperature range of 293–483 K. |
doi_str_mv | 10.3103/S0361521922030028 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2678499728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678499728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1138-61a885994aa99f1707a2b325c454675095fb515839916d04941785d977ed2ae13</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gsMQf8GdsjROVDKlCJMkeO41BXTRzsdOjOD8dpkRgQ053ufZ476QC4xOiaYkRv3hDNMSdYEYIoQkQegQlWlGUSEXUMJmOcjfkpOItxjRDnSqIJ-FqsdtEZb1a2dUZvoO5qONtYMwTf76M0W6TehsHZCH0DNSx82_voBguf9WCDS8idjraGvoOFDlUqL7rzjatsGOV6a1LYBN8mNcFLHfZ3RsgF352Dk0Zvor34qVPwfj9bFo_Z_PXhqbidZwZjKrMcaym5UkxrpRoskNCkooQbxlkuOFK8qTjmkiqF8xoxxbCQvFZC2Jpoi-kUXB329sF_bm0cyrXfhi6dLEkuJFNKEJkofKBM8DEG25R9cK0OuxKjcnx2-efZySEHJya2-7Dhd_P_0jcEOH_p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678499728</pqid></control><display><type>article</type><title>Physicochemical and Electrophysical Properties of a Composite Material Based on Carbon Nanofiber Produced from Coal Tar and Nanoiron</title><source>SpringerLink Journals</source><creator>Yermagambet, B. T. ; Kazankapova, M. K. ; Kassenov, B. K. ; Kassenova, Zh. M. ; Nauryzbaeva, A. T. ; Kuanyshbekov, E. E.</creator><creatorcontrib>Yermagambet, B. T. ; Kazankapova, M. K. ; Kassenov, B. K. ; Kassenova, Zh. M. ; Nauryzbaeva, A. T. ; Kuanyshbekov, E. E.</creatorcontrib><description>Experiments on the production of a nanocomposite material from coal tar obtained from coal of the Shubarkol deposit and nanoiron by electrospinning on a laboratory setup are presented. The elemental composition was determined, and the surface morphology of the test sample was studied. As a result of energy dispersive X-ray spectroscopy and SEM microscopy, the elemental composition (C, 92.14%; O, 6.16%; Al, 0.30%; Si, 0.26%; Р, 0.07%; S, 0.20%; Cl, 0.40%; and Fe, 0.47%) and the diameter of the carbon nanofiber, which ranged from 94.2 to 800.0 nm, were determined. The results of IR spectroscopy showed an increase in the intensity of peaks in a range of 2920–2850 cm
–1
and the appearance of a signal at 2359 cm
–1
, which was explained by the breaking of several chemical bonds in the sample structure and the formation of a composite with nanoiron. The electrical resistance (
R
), electrical capacitance (
C
), and permittivity (ε) of a carbonized sample were determined for the first time in a temperature range of 293–483 K.</description><identifier>ISSN: 0361-5219</identifier><identifier>EISSN: 1934-8029</identifier><identifier>DOI: 10.3103/S0361521922030028</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminum ; Carbon fibers ; Chemical bonds ; Chemical composition ; Chemistry ; Chemistry and Materials Science ; Coal ; Coal tar ; Composite materials ; Infrared spectroscopy ; Nanocomposites ; Nanofibers ; Physical Chemistry ; Silicon ; Spectrum analysis</subject><ispartof>Solid fuel chemistry, 2022, Vol.56 (3), p.171-180</ispartof><rights>Allerton Press, Inc. 2022. ISSN 0361-5219, Solid Fuel Chemistry, 2022, Vol. 56, No. 3, pp. 171–180. © Allerton Press, Inc., 2022. Russian Text © The Author(s), 2022, published in Khimiya Tverdogo Topliva, 2022, No. 3, pp. 19–29.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1138-61a885994aa99f1707a2b325c454675095fb515839916d04941785d977ed2ae13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0361521922030028$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0361521922030028$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yermagambet, B. T.</creatorcontrib><creatorcontrib>Kazankapova, M. K.</creatorcontrib><creatorcontrib>Kassenov, B. K.</creatorcontrib><creatorcontrib>Kassenova, Zh. M.</creatorcontrib><creatorcontrib>Nauryzbaeva, A. T.</creatorcontrib><creatorcontrib>Kuanyshbekov, E. E.</creatorcontrib><title>Physicochemical and Electrophysical Properties of a Composite Material Based on Carbon Nanofiber Produced from Coal Tar and Nanoiron</title><title>Solid fuel chemistry</title><addtitle>Solid Fuel Chem</addtitle><description>Experiments on the production of a nanocomposite material from coal tar obtained from coal of the Shubarkol deposit and nanoiron by electrospinning on a laboratory setup are presented. The elemental composition was determined, and the surface morphology of the test sample was studied. As a result of energy dispersive X-ray spectroscopy and SEM microscopy, the elemental composition (C, 92.14%; O, 6.16%; Al, 0.30%; Si, 0.26%; Р, 0.07%; S, 0.20%; Cl, 0.40%; and Fe, 0.47%) and the diameter of the carbon nanofiber, which ranged from 94.2 to 800.0 nm, were determined. The results of IR spectroscopy showed an increase in the intensity of peaks in a range of 2920–2850 cm
–1
and the appearance of a signal at 2359 cm
–1
, which was explained by the breaking of several chemical bonds in the sample structure and the formation of a composite with nanoiron. The electrical resistance (
R
), electrical capacitance (
C
), and permittivity (ε) of a carbonized sample were determined for the first time in a temperature range of 293–483 K.</description><subject>Aluminum</subject><subject>Carbon fibers</subject><subject>Chemical bonds</subject><subject>Chemical composition</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coal</subject><subject>Coal tar</subject><subject>Composite materials</subject><subject>Infrared spectroscopy</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><subject>Physical Chemistry</subject><subject>Silicon</subject><subject>Spectrum analysis</subject><issn>0361-5219</issn><issn>1934-8029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqXwA9gsMQf8GdsjROVDKlCJMkeO41BXTRzsdOjOD8dpkRgQ053ufZ476QC4xOiaYkRv3hDNMSdYEYIoQkQegQlWlGUSEXUMJmOcjfkpOItxjRDnSqIJ-FqsdtEZb1a2dUZvoO5qONtYMwTf76M0W6TehsHZCH0DNSx82_voBguf9WCDS8idjraGvoOFDlUqL7rzjatsGOV6a1LYBN8mNcFLHfZ3RsgF352Dk0Zvor34qVPwfj9bFo_Z_PXhqbidZwZjKrMcaym5UkxrpRoskNCkooQbxlkuOFK8qTjmkiqF8xoxxbCQvFZC2Jpoi-kUXB329sF_bm0cyrXfhi6dLEkuJFNKEJkofKBM8DEG25R9cK0OuxKjcnx2-efZySEHJya2-7Dhd_P_0jcEOH_p</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yermagambet, B. T.</creator><creator>Kazankapova, M. K.</creator><creator>Kassenov, B. K.</creator><creator>Kassenova, Zh. M.</creator><creator>Nauryzbaeva, A. T.</creator><creator>Kuanyshbekov, E. E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Physicochemical and Electrophysical Properties of a Composite Material Based on Carbon Nanofiber Produced from Coal Tar and Nanoiron</title><author>Yermagambet, B. T. ; Kazankapova, M. K. ; Kassenov, B. K. ; Kassenova, Zh. M. ; Nauryzbaeva, A. T. ; Kuanyshbekov, E. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1138-61a885994aa99f1707a2b325c454675095fb515839916d04941785d977ed2ae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Carbon fibers</topic><topic>Chemical bonds</topic><topic>Chemical composition</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coal</topic><topic>Coal tar</topic><topic>Composite materials</topic><topic>Infrared spectroscopy</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><topic>Physical Chemistry</topic><topic>Silicon</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yermagambet, B. T.</creatorcontrib><creatorcontrib>Kazankapova, M. K.</creatorcontrib><creatorcontrib>Kassenov, B. K.</creatorcontrib><creatorcontrib>Kassenova, Zh. M.</creatorcontrib><creatorcontrib>Nauryzbaeva, A. T.</creatorcontrib><creatorcontrib>Kuanyshbekov, E. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Solid fuel chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yermagambet, B. T.</au><au>Kazankapova, M. K.</au><au>Kassenov, B. K.</au><au>Kassenova, Zh. M.</au><au>Nauryzbaeva, A. T.</au><au>Kuanyshbekov, E. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physicochemical and Electrophysical Properties of a Composite Material Based on Carbon Nanofiber Produced from Coal Tar and Nanoiron</atitle><jtitle>Solid fuel chemistry</jtitle><stitle>Solid Fuel Chem</stitle><date>2022</date><risdate>2022</risdate><volume>56</volume><issue>3</issue><spage>171</spage><epage>180</epage><pages>171-180</pages><issn>0361-5219</issn><eissn>1934-8029</eissn><abstract>Experiments on the production of a nanocomposite material from coal tar obtained from coal of the Shubarkol deposit and nanoiron by electrospinning on a laboratory setup are presented. The elemental composition was determined, and the surface morphology of the test sample was studied. As a result of energy dispersive X-ray spectroscopy and SEM microscopy, the elemental composition (C, 92.14%; O, 6.16%; Al, 0.30%; Si, 0.26%; Р, 0.07%; S, 0.20%; Cl, 0.40%; and Fe, 0.47%) and the diameter of the carbon nanofiber, which ranged from 94.2 to 800.0 nm, were determined. The results of IR spectroscopy showed an increase in the intensity of peaks in a range of 2920–2850 cm
–1
and the appearance of a signal at 2359 cm
–1
, which was explained by the breaking of several chemical bonds in the sample structure and the formation of a composite with nanoiron. The electrical resistance (
R
), electrical capacitance (
C
), and permittivity (ε) of a carbonized sample were determined for the first time in a temperature range of 293–483 K.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0361521922030028</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0361-5219 |
ispartof | Solid fuel chemistry, 2022, Vol.56 (3), p.171-180 |
issn | 0361-5219 1934-8029 |
language | eng |
recordid | cdi_proquest_journals_2678499728 |
source | SpringerLink Journals |
subjects | Aluminum Carbon fibers Chemical bonds Chemical composition Chemistry Chemistry and Materials Science Coal Coal tar Composite materials Infrared spectroscopy Nanocomposites Nanofibers Physical Chemistry Silicon Spectrum analysis |
title | Physicochemical and Electrophysical Properties of a Composite Material Based on Carbon Nanofiber Produced from Coal Tar and Nanoiron |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A30%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physicochemical%20and%20Electrophysical%20Properties%20of%20a%20Composite%20Material%20Based%20on%20Carbon%20Nanofiber%20Produced%20from%20Coal%20Tar%20and%20Nanoiron&rft.jtitle=Solid%20fuel%20chemistry&rft.au=Yermagambet,%20B.%20T.&rft.date=2022&rft.volume=56&rft.issue=3&rft.spage=171&rft.epage=180&rft.pages=171-180&rft.issn=0361-5219&rft.eissn=1934-8029&rft_id=info:doi/10.3103/S0361521922030028&rft_dat=%3Cproquest_cross%3E2678499728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678499728&rft_id=info:pmid/&rfr_iscdi=true |