Physicochemical and Electrophysical Properties of a Composite Material Based on Carbon Nanofiber Produced from Coal Tar and Nanoiron

Experiments on the production of a nanocomposite material from coal tar obtained from coal of the Shubarkol deposit and nanoiron by electrospinning on a laboratory setup are presented. The elemental composition was determined, and the surface morphology of the test sample was studied. As a result of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Solid fuel chemistry 2022, Vol.56 (3), p.171-180
Hauptverfasser: Yermagambet, B. T., Kazankapova, M. K., Kassenov, B. K., Kassenova, Zh. M., Nauryzbaeva, A. T., Kuanyshbekov, E. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 180
container_issue 3
container_start_page 171
container_title Solid fuel chemistry
container_volume 56
creator Yermagambet, B. T.
Kazankapova, M. K.
Kassenov, B. K.
Kassenova, Zh. M.
Nauryzbaeva, A. T.
Kuanyshbekov, E. E.
description Experiments on the production of a nanocomposite material from coal tar obtained from coal of the Shubarkol deposit and nanoiron by electrospinning on a laboratory setup are presented. The elemental composition was determined, and the surface morphology of the test sample was studied. As a result of energy dispersive X-ray spectroscopy and SEM microscopy, the elemental composition (C, 92.14%; O, 6.16%; Al, 0.30%; Si, 0.26%; Р, 0.07%; S, 0.20%; Cl, 0.40%; and Fe, 0.47%) and the diameter of the carbon nanofiber, which ranged from 94.2 to 800.0 nm, were determined. The results of IR spectroscopy showed an increase in the intensity of peaks in a range of 2920–2850 cm –1 and the appearance of a signal at 2359 cm –1 , which was explained by the breaking of several chemical bonds in the sample structure and the formation of a composite with nanoiron. The electrical resistance ( R ), electrical capacitance ( C ), and permittivity (ε) of a carbonized sample were determined for the first time in a temperature range of 293–483 K.
doi_str_mv 10.3103/S0361521922030028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2678499728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2678499728</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1138-61a885994aa99f1707a2b325c454675095fb515839916d04941785d977ed2ae13</originalsourceid><addsrcrecordid>eNp1kD1PwzAQhi0EEqXwA9gsMQf8GdsjROVDKlCJMkeO41BXTRzsdOjOD8dpkRgQ053ufZ476QC4xOiaYkRv3hDNMSdYEYIoQkQegQlWlGUSEXUMJmOcjfkpOItxjRDnSqIJ-FqsdtEZb1a2dUZvoO5qONtYMwTf76M0W6TehsHZCH0DNSx82_voBguf9WCDS8idjraGvoOFDlUqL7rzjatsGOV6a1LYBN8mNcFLHfZ3RsgF352Dk0Zvor34qVPwfj9bFo_Z_PXhqbidZwZjKrMcaym5UkxrpRoskNCkooQbxlkuOFK8qTjmkiqF8xoxxbCQvFZC2Jpoi-kUXB329sF_bm0cyrXfhi6dLEkuJFNKEJkofKBM8DEG25R9cK0OuxKjcnx2-efZySEHJya2-7Dhd_P_0jcEOH_p</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2678499728</pqid></control><display><type>article</type><title>Physicochemical and Electrophysical Properties of a Composite Material Based on Carbon Nanofiber Produced from Coal Tar and Nanoiron</title><source>SpringerLink Journals</source><creator>Yermagambet, B. T. ; Kazankapova, M. K. ; Kassenov, B. K. ; Kassenova, Zh. M. ; Nauryzbaeva, A. T. ; Kuanyshbekov, E. E.</creator><creatorcontrib>Yermagambet, B. T. ; Kazankapova, M. K. ; Kassenov, B. K. ; Kassenova, Zh. M. ; Nauryzbaeva, A. T. ; Kuanyshbekov, E. E.</creatorcontrib><description>Experiments on the production of a nanocomposite material from coal tar obtained from coal of the Shubarkol deposit and nanoiron by electrospinning on a laboratory setup are presented. The elemental composition was determined, and the surface morphology of the test sample was studied. As a result of energy dispersive X-ray spectroscopy and SEM microscopy, the elemental composition (C, 92.14%; O, 6.16%; Al, 0.30%; Si, 0.26%; Р, 0.07%; S, 0.20%; Cl, 0.40%; and Fe, 0.47%) and the diameter of the carbon nanofiber, which ranged from 94.2 to 800.0 nm, were determined. The results of IR spectroscopy showed an increase in the intensity of peaks in a range of 2920–2850 cm –1 and the appearance of a signal at 2359 cm –1 , which was explained by the breaking of several chemical bonds in the sample structure and the formation of a composite with nanoiron. The electrical resistance ( R ), electrical capacitance ( C ), and permittivity (ε) of a carbonized sample were determined for the first time in a temperature range of 293–483 K.</description><identifier>ISSN: 0361-5219</identifier><identifier>EISSN: 1934-8029</identifier><identifier>DOI: 10.3103/S0361521922030028</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Aluminum ; Carbon fibers ; Chemical bonds ; Chemical composition ; Chemistry ; Chemistry and Materials Science ; Coal ; Coal tar ; Composite materials ; Infrared spectroscopy ; Nanocomposites ; Nanofibers ; Physical Chemistry ; Silicon ; Spectrum analysis</subject><ispartof>Solid fuel chemistry, 2022, Vol.56 (3), p.171-180</ispartof><rights>Allerton Press, Inc. 2022. ISSN 0361-5219, Solid Fuel Chemistry, 2022, Vol. 56, No. 3, pp. 171–180. © Allerton Press, Inc., 2022. Russian Text © The Author(s), 2022, published in Khimiya Tverdogo Topliva, 2022, No. 3, pp. 19–29.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1138-61a885994aa99f1707a2b325c454675095fb515839916d04941785d977ed2ae13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.3103/S0361521922030028$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.3103/S0361521922030028$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Yermagambet, B. T.</creatorcontrib><creatorcontrib>Kazankapova, M. K.</creatorcontrib><creatorcontrib>Kassenov, B. K.</creatorcontrib><creatorcontrib>Kassenova, Zh. M.</creatorcontrib><creatorcontrib>Nauryzbaeva, A. T.</creatorcontrib><creatorcontrib>Kuanyshbekov, E. E.</creatorcontrib><title>Physicochemical and Electrophysical Properties of a Composite Material Based on Carbon Nanofiber Produced from Coal Tar and Nanoiron</title><title>Solid fuel chemistry</title><addtitle>Solid Fuel Chem</addtitle><description>Experiments on the production of a nanocomposite material from coal tar obtained from coal of the Shubarkol deposit and nanoiron by electrospinning on a laboratory setup are presented. The elemental composition was determined, and the surface morphology of the test sample was studied. As a result of energy dispersive X-ray spectroscopy and SEM microscopy, the elemental composition (C, 92.14%; O, 6.16%; Al, 0.30%; Si, 0.26%; Р, 0.07%; S, 0.20%; Cl, 0.40%; and Fe, 0.47%) and the diameter of the carbon nanofiber, which ranged from 94.2 to 800.0 nm, were determined. The results of IR spectroscopy showed an increase in the intensity of peaks in a range of 2920–2850 cm –1 and the appearance of a signal at 2359 cm –1 , which was explained by the breaking of several chemical bonds in the sample structure and the formation of a composite with nanoiron. The electrical resistance ( R ), electrical capacitance ( C ), and permittivity (ε) of a carbonized sample were determined for the first time in a temperature range of 293–483 K.</description><subject>Aluminum</subject><subject>Carbon fibers</subject><subject>Chemical bonds</subject><subject>Chemical composition</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coal</subject><subject>Coal tar</subject><subject>Composite materials</subject><subject>Infrared spectroscopy</subject><subject>Nanocomposites</subject><subject>Nanofibers</subject><subject>Physical Chemistry</subject><subject>Silicon</subject><subject>Spectrum analysis</subject><issn>0361-5219</issn><issn>1934-8029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAQhi0EEqXwA9gsMQf8GdsjROVDKlCJMkeO41BXTRzsdOjOD8dpkRgQ053ufZ476QC4xOiaYkRv3hDNMSdYEYIoQkQegQlWlGUSEXUMJmOcjfkpOItxjRDnSqIJ-FqsdtEZb1a2dUZvoO5qONtYMwTf76M0W6TehsHZCH0DNSx82_voBguf9WCDS8idjraGvoOFDlUqL7rzjatsGOV6a1LYBN8mNcFLHfZ3RsgF352Dk0Zvor34qVPwfj9bFo_Z_PXhqbidZwZjKrMcaym5UkxrpRoskNCkooQbxlkuOFK8qTjmkiqF8xoxxbCQvFZC2Jpoi-kUXB329sF_bm0cyrXfhi6dLEkuJFNKEJkofKBM8DEG25R9cK0OuxKjcnx2-efZySEHJya2-7Dhd_P_0jcEOH_p</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Yermagambet, B. T.</creator><creator>Kazankapova, M. K.</creator><creator>Kassenov, B. K.</creator><creator>Kassenova, Zh. M.</creator><creator>Nauryzbaeva, A. T.</creator><creator>Kuanyshbekov, E. E.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>Physicochemical and Electrophysical Properties of a Composite Material Based on Carbon Nanofiber Produced from Coal Tar and Nanoiron</title><author>Yermagambet, B. T. ; Kazankapova, M. K. ; Kassenov, B. K. ; Kassenova, Zh. M. ; Nauryzbaeva, A. T. ; Kuanyshbekov, E. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1138-61a885994aa99f1707a2b325c454675095fb515839916d04941785d977ed2ae13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aluminum</topic><topic>Carbon fibers</topic><topic>Chemical bonds</topic><topic>Chemical composition</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coal</topic><topic>Coal tar</topic><topic>Composite materials</topic><topic>Infrared spectroscopy</topic><topic>Nanocomposites</topic><topic>Nanofibers</topic><topic>Physical Chemistry</topic><topic>Silicon</topic><topic>Spectrum analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yermagambet, B. T.</creatorcontrib><creatorcontrib>Kazankapova, M. K.</creatorcontrib><creatorcontrib>Kassenov, B. K.</creatorcontrib><creatorcontrib>Kassenova, Zh. M.</creatorcontrib><creatorcontrib>Nauryzbaeva, A. T.</creatorcontrib><creatorcontrib>Kuanyshbekov, E. E.</creatorcontrib><collection>CrossRef</collection><jtitle>Solid fuel chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yermagambet, B. T.</au><au>Kazankapova, M. K.</au><au>Kassenov, B. K.</au><au>Kassenova, Zh. M.</au><au>Nauryzbaeva, A. T.</au><au>Kuanyshbekov, E. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physicochemical and Electrophysical Properties of a Composite Material Based on Carbon Nanofiber Produced from Coal Tar and Nanoiron</atitle><jtitle>Solid fuel chemistry</jtitle><stitle>Solid Fuel Chem</stitle><date>2022</date><risdate>2022</risdate><volume>56</volume><issue>3</issue><spage>171</spage><epage>180</epage><pages>171-180</pages><issn>0361-5219</issn><eissn>1934-8029</eissn><abstract>Experiments on the production of a nanocomposite material from coal tar obtained from coal of the Shubarkol deposit and nanoiron by electrospinning on a laboratory setup are presented. The elemental composition was determined, and the surface morphology of the test sample was studied. As a result of energy dispersive X-ray spectroscopy and SEM microscopy, the elemental composition (C, 92.14%; O, 6.16%; Al, 0.30%; Si, 0.26%; Р, 0.07%; S, 0.20%; Cl, 0.40%; and Fe, 0.47%) and the diameter of the carbon nanofiber, which ranged from 94.2 to 800.0 nm, were determined. The results of IR spectroscopy showed an increase in the intensity of peaks in a range of 2920–2850 cm –1 and the appearance of a signal at 2359 cm –1 , which was explained by the breaking of several chemical bonds in the sample structure and the formation of a composite with nanoiron. The electrical resistance ( R ), electrical capacitance ( C ), and permittivity (ε) of a carbonized sample were determined for the first time in a temperature range of 293–483 K.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.3103/S0361521922030028</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0361-5219
ispartof Solid fuel chemistry, 2022, Vol.56 (3), p.171-180
issn 0361-5219
1934-8029
language eng
recordid cdi_proquest_journals_2678499728
source SpringerLink Journals
subjects Aluminum
Carbon fibers
Chemical bonds
Chemical composition
Chemistry
Chemistry and Materials Science
Coal
Coal tar
Composite materials
Infrared spectroscopy
Nanocomposites
Nanofibers
Physical Chemistry
Silicon
Spectrum analysis
title Physicochemical and Electrophysical Properties of a Composite Material Based on Carbon Nanofiber Produced from Coal Tar and Nanoiron
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T03%3A30%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physicochemical%20and%20Electrophysical%20Properties%20of%20a%20Composite%20Material%20Based%20on%20Carbon%20Nanofiber%20Produced%20from%20Coal%20Tar%20and%20Nanoiron&rft.jtitle=Solid%20fuel%20chemistry&rft.au=Yermagambet,%20B.%20T.&rft.date=2022&rft.volume=56&rft.issue=3&rft.spage=171&rft.epage=180&rft.pages=171-180&rft.issn=0361-5219&rft.eissn=1934-8029&rft_id=info:doi/10.3103/S0361521922030028&rft_dat=%3Cproquest_cross%3E2678499728%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2678499728&rft_id=info:pmid/&rfr_iscdi=true