Organic redox polymers as electrochemical energy materials

Redox polymers reversibly release electrons (undergo oxidation) and gain electrons (undergo reduction). The chemical design of organic-based redox polymers is very interesting from the perspectives of studying their unique electrochemical capabilities and their use in a variety of charge-storage-dev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Green chemistry : an international journal and green chemistry resource : GC 2022-06, Vol.24 (12), p.465-4679
1. Verfasser: Nishide, Hiroyuki
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Redox polymers reversibly release electrons (undergo oxidation) and gain electrons (undergo reduction). The chemical design of organic-based redox polymers is very interesting from the perspectives of studying their unique electrochemical capabilities and their use in a variety of charge-storage-device and redox-catalyst applications. This review begins by introducing the rapid electron-exchange reactions of organic redox molecules and the bistability of their oxidised and reduced forms, followed by a discussion on efficient and reversible charge propagation and storage in redox polymers containing backbones that are densely populated with redox-active sites. Employing redox polymers in rechargeable charge-storage devices, as hydrogen carriers, and for the electrochemical production of hydrogen peroxide, hydrogen, and oxygen from water is then discussed, including more-recent examples that include flexible and high-power batteries, electrode-active biomaterials, and solar-driven catalytic films. The advantages of redox polymers are also noted in terms of non-biohazardous organic materials that are derived from relatively-abundant resources, as well as their functions in environmentally-friendly applications. This review provides basic insight into the characteristics of redox polymers, and is expected to stimulate their development as sustainable materials for use in energy-related technologies. The review provides basic insight into organic redox polymers: efficient charge propagation and storage among the highly populated redox active/bistable sites, as well as their functions in environmentally-friendly applications.
ISSN:1463-9262
1463-9270
DOI:10.1039/d2gc00981a