Existence and Stability Results for Caputo-Type Sequential Fractional Differential Equations with New Kind of Boundary Conditions

In this paper, we present the existence and the stability results for a nonlinear coupled system of sequential fractional differential equations supplemented with a new kind of coupled boundary conditions. Existence and uniqueness results are established by using Schaefer’s fixed point theorem and B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2022-06, Vol.2022, p.1-15
Hauptverfasser: Awadalla, Muath, Manigandan, Murugesan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we present the existence and the stability results for a nonlinear coupled system of sequential fractional differential equations supplemented with a new kind of coupled boundary conditions. Existence and uniqueness results are established by using Schaefer’s fixed point theorem and Banach’s contraction mapping principle. We examine the stability of the solutions involved in the Hyers–Ulam type. A few examples are presented to illustrate the main results.
ISSN:1024-123X
1563-5147
DOI:10.1155/2022/3999829