Global existence for the semi-linear wave/Klein–Gordon equation associated to the harmonic oscillator in low dimensions

We show that the small solution for the semi-linear wave/Klein–Gordon equation associated to the harmonic oscillator exists globally in dimension 1 and 2. Moreover, we prove that the Sobolev norm of the solution grows at most polynomially.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nonlinear differential equations and applications 2022, Vol.29 (4), Article 50
Hauptverfasser: Xue, Lingyun, Zhang, Qidi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that the small solution for the semi-linear wave/Klein–Gordon equation associated to the harmonic oscillator exists globally in dimension 1 and 2. Moreover, we prove that the Sobolev norm of the solution grows at most polynomially.
ISSN:1021-9722
1420-9004
DOI:10.1007/s00030-022-00776-1