Subcritical Turing patterns in hyperbolic models with cross–diffusion
This paper focuses on the role of hyperbolicity on pattern formation in the subcritical regime for a class of hyperbolic models with cross-diffusion. A weakly nonlinear analysis up to the fifth order is employed to describe the time evolution of the pattern amplitude close to the instability thresho...
Gespeichert in:
Veröffentlicht in: | Ricerche di matematica 2022, Vol.71 (1), p.147-167 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper focuses on the role of hyperbolicity on pattern formation in the subcritical regime for a class of hyperbolic models with cross-diffusion. A weakly nonlinear analysis up to the fifth order is employed to describe the time evolution of the pattern amplitude close to the instability threshold. The effects of the inertial times on the pattern formation as well as on the transient subcritical regime are investigated, both analitically and numerically, in the case of the hyperbolic Schnakenberg model. |
---|---|
ISSN: | 0035-5038 1827-3491 |
DOI: | 10.1007/s11587-021-00574-4 |