Digestion processes and elemental analysis of oxide and sulfide solid electrolytes
Detailed elemental analysis is essential for a successful development and optimization of material systems and synthesis methods. This is especially relevant for Li- and Na-containing compounds, found in state-of-the-art and next-generation battery systems. Their materials’ properties and thus the f...
Gespeichert in:
Veröffentlicht in: | Ionics 2022-07, Vol.28 (7), p.3223-3231 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Detailed elemental analysis is essential for a successful development and optimization of material systems and synthesis methods. This is especially relevant for Li- and Na-containing compounds, found in state-of-the-art and next-generation battery systems. Their materials’ properties and thus the final device performance strongly depend on the crystal structure, the stoichiometry, and defect chemistry, e.g., influencing charge carrier concentration and activation energies for vacancy transport. However, a detailed quantitative analysis of light elements in a heavy matrix, featuring a broad range of solubilities and vapor pressures, is often difficult and associated with large uncertainties and thus neglected in favor of just reporting the stoichiometry as “weighed in.” In this work, we report several approaches to digest and dissolve various oxide and sulfide-based materials, used in next-generation Li batteries, for elemental analysis via optical emission spectroscopy. These include the most common solid electrolytes Li-La-Ti–O, a perovskite material (LLTO), and Li-La-Zr-O which has garnet structure (LLZO). Additionally, a facile thermal digestion process is reported for a surrogate sulfide solid electrolyte (Na
2
S). The digestion procedures reported here are suitable for almost any laboratory environment and, when applied, will improve understanding of the synthesis-structure–property correlations needed to advanced batteries with all solid-state configurations. |
---|---|
ISSN: | 0947-7047 1862-0760 |
DOI: | 10.1007/s11581-022-04536-0 |