Anderson–Bernoulli Localization at Large Disorder on the 2D Lattice

We consider the Anderson model at large disorder on Z 2 where the potential has a symmetric Bernoulli distribution. We prove that Anderson localization happens outside a small neighborhood of finitely many energies. These finitely many energies are Dirichlet eigenvalues of the minus Laplacian restri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications in mathematical physics 2022-07, Vol.393 (1), p.151-214
1. Verfasser: Li, Linjun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the Anderson model at large disorder on Z 2 where the potential has a symmetric Bernoulli distribution. We prove that Anderson localization happens outside a small neighborhood of finitely many energies. These finitely many energies are Dirichlet eigenvalues of the minus Laplacian restricted on some finite subsets of Z 2 .
ISSN:0010-3616
1432-0916
DOI:10.1007/s00220-022-04366-1