A two-dimensional rationality problem and intersections of two quadrics
Let k be a field with char k ≠ 2 and k be not algebraically closed. Let a ∈ k \ k 2 and L = k ( a ) ( x , y ) be a field extension of k where x , y are algebraically independent over k . Assume that σ is a k -automorphism on L defined by σ : a ↦ - a , x ↦ b x , y ↦ c ( x + b x ) + d y where b , c ,...
Gespeichert in:
Veröffentlicht in: | Manuscripta mathematica 2022-07, Vol.168 (3-4), p.423-437 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
k
be a field with char
k
≠
2
and
k
be not algebraically closed. Let
a
∈
k
\
k
2
and
L
=
k
(
a
)
(
x
,
y
)
be a field extension of
k
where
x
,
y
are algebraically independent over
k
. Assume that
σ
is a
k
-automorphism on
L
defined by
σ
:
a
↦
-
a
,
x
↦
b
x
,
y
↦
c
(
x
+
b
x
)
+
d
y
where
b
,
c
,
d
∈
k
,
b
≠
0
and at least one of
c
,
d
is non-zero. Let
L
⟨
σ
⟩
=
{
u
∈
L
:
σ
(
u
)
=
u
}
be the fixed subfield of
L
. We show that
L
⟨
σ
⟩
is isomorphic to the function field of a certain surface in
P
k
4
which is given as the intersection of two quadrics. We give criteria for the
k
-rationality of
L
⟨
σ
⟩
by using the Hilbert symbol. As an appendix of the paper, we also give an alternative geometric proof of a part of the result which is provided to the authors by J.-L. Colliot-Thélène. |
---|---|
ISSN: | 0025-2611 1432-1785 |
DOI: | 10.1007/s00229-021-01313-7 |