Global stability and bifurcation analysis of a discrete time SIR epidemic model

In this paper, we study the complex dynamical behaviors of a discrete-time SIR epidemic model. Analysis of the model demonstrates that the Diseases Free Equilibrium (DFE) point is globally asymptotically stable if the basic reproduction number is less than one while the Endemic Equilibrium (EE) poin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical notes (Miskolci Egyetem (Hungary)) 2022, Vol.23 (1), p.193-210
Hauptverfasser: Gümüs, Özlem Ak, Cui, Qianqian, Selvam, George Maria, Vianny, Abraham
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we study the complex dynamical behaviors of a discrete-time SIR epidemic model. Analysis of the model demonstrates that the Diseases Free Equilibrium (DFE) point is globally asymptotically stable if the basic reproduction number is less than one while the Endemic Equilibrium (EE) point is globally asymptotically stable if the basic reproduction number is greater than one. The results are further substantiated visually with numerical simulations. Furthermore, numerical results demonstrate that the discrete model has more complex dynamical behaviors including multiple periodic orbits, quasi-periodic orbits and chaotic behaviors. The maximum Lyapunov exponent and chaotic attractors also confirm the chaotic dynamical behaviors of the model.
ISSN:1787-2405
1787-2413
DOI:10.18514/MMN.2022.3417