Formation of the intermetallic phases Al12Mg17 and Al3Mg2 during heating of elemental Al-Mg composites studied by high-energy X-ray diffraction
The purpose of the present study is to track the formation of the intermetallic phases that form in the binary Al-Mg system and investigate their orientation relationships to the parent Al and Mg elements. Therefore, two compositions Al60Mg40 and Al40Mg60 (wt%), which are very suitable for studying...
Gespeichert in:
Veröffentlicht in: | Journal of alloys and compounds 2022-08, Vol.911, p.165114, Article 165114 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The purpose of the present study is to track the formation of the intermetallic phases that form in the binary Al-Mg system and investigate their orientation relationships to the parent Al and Mg elements. Therefore, two compositions Al60Mg40 and Al40Mg60 (wt%), which are very suitable for studying the diffusion of Al in Mg and Mg in Al were heated from room temperature up to elevated temperatures below the melting point. Powder metallurgy, including cold extrusion was used to create a large interface between the Al and Mg, which facilitates fast reaction kinetics. In order to observe the phase formation during heating and analyze the crystal structures, X-ray diffraction using synchrotron radiation was used. The use of high energy X-ray was extremely helpful, enabling the detection of small phase fractions and information on the orientation relationships between the Al and Mg and the intermetallic phases that formed. The γ-Al12Mg17phase was the first phase formed in both alloy compositions on annealing. Subsequently, the β-Al3Mg2phase was formed. After annealing at 400 ºC for 2 h, the Al40Mg60 composition consisted of a very high amount of Al12Mg17 and a small amount of Mg phase while the Al60Mg40 composition consisted of mainly Al3Mg2 and a small fraction of Al12Mg17, indicating that thermodynamic equilibrium has been approximated. On further annealing at 400 ºC for 12 h, both compositions formed only one phase, namely the Al12Mg17 phase in the Al40Mg60 composition and the Al3Mg2 phase in the Al60Mg40 composition. In this condition, a Pitsch-Schrader orientation relationship was found between the Mg and the γ-Al12Mg17 phase, the occurrence of which is discussed within the framework of literature models. No orientation relationship between either the Al or the Mg with the Al3Mg2 phase was found.
•Phase development of intermetallics formed in binary Al-Mg were studied with high energy X-ray.•The high fraction of interfaces allows investigation of the phase evolution in a very short time.•The γ-Al12Mg17-phase shows the Pitsch-Schrader orientation relationship with the parent Mg phase.•No orientation relationship between the β- Al3Mg2 phase and the Al or Mg phases was observed. |
---|---|
ISSN: | 0925-8388 1873-4669 |
DOI: | 10.1016/j.jallcom.2022.165114 |