A strategy to control crystal water content in hydrated vanadium oxide cathode for promoting aqueous rechargeable zinc-ion batteries

A simple hydrothermal route is used to prepare 3D porous hydrated vanadium oxide porous microspheres with different crystal water content. It is the first report that too much water molecule can lead to poor Zn storage performance and optimal structural water content is needed to improve electrochem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of alloys and compounds 2022-08, Vol.911, p.165102, Article 165102
Hauptverfasser: Gu, Yuanxiang, Han, Yingjie, Qin, Zihan, Li, Di, Wang, Lei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A simple hydrothermal route is used to prepare 3D porous hydrated vanadium oxide porous microspheres with different crystal water content. It is the first report that too much water molecule can lead to poor Zn storage performance and optimal structural water content is needed to improve electrochemical performance. By tuning the ratio of Zn to V during the synthesized process, Zn0.146V2O5∙0.579 H2O porous microspheres with optimal structural water content exhibit superior electrochemical performance for a promising aqueous rechargeable Zn-ion batteries. At the current density of 0.1 A g−1, it can register a high reversible discharge capacity of 416 mAh g−1. An initial discharge capacity can reach 192 mAh g−1 at the current density of 10.0 A g−1, the specific capacity remains at 202 mAh g−1 and the capacity retention is 105% after 10,000 cycles. Optimal structural water content as well as synergistic effect of pre-intercalated Zn2+ ions should be responsible for excellent electrochemical performance of cathode materials. Optimized crystal water content endows superior performance of hydrated vanadium oxide cathode for aqueous rechargeable zinc ion batteries. [Display omitted] •3D porous hydrated vanadium oxide porous microspheres with different crystal water content was prepared.•It is the first report that too much water molecule can lead to poor performance.•The excellent performance is attributed to optimal structural water content and pre-intercalated Zn2+ ions.
ISSN:0925-8388
1873-4669
DOI:10.1016/j.jallcom.2022.165102