Very Rare Heat Extremes: Quantifying and Understanding Using Ensemble Reinitialization

Heat waves such as the one in Europe 2003 have severe consequences for the economy, society, and ecosystems. It is unclear whether temperatures could have exceeded these anomalies even without further climate change. Developing storylines and quantifying the highest possible temperature levels is ch...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2021-08, Vol.34 (16), p.6619-6634
Hauptverfasser: Gessner, Claudia, Fischer, Erich M., Beyerle, Urs, Knutti, Reto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Heat waves such as the one in Europe 2003 have severe consequences for the economy, society, and ecosystems. It is unclear whether temperatures could have exceeded these anomalies even without further climate change. Developing storylines and quantifying the highest possible temperature levels is challenging given the lack of a long homogeneous time series and methodological framework to assess them. Here, we address this challenge by analyzing summer temperatures in a nearly 5000-yr preindustrial climate model simulation, performed with the Community Earth System Model CESM1. To assess how anomalous temperatures could get, we compare storylines generated by three different methods: 1) a return-level estimate, deduced from a generalized extreme value distribution; 2) a regression model, based on dynamic and thermodynamic heat wave drivers; and 3) a novel ensemble boosting method, generating large samples of reinitialized extreme heat waves in the long climate simulation. All methods provide consistent temperature estimates, suggesting that historical exceptional heat waves such as those in Chicago in 1995, Europe in 2003, and Russia in 2010 could have been substantially exceeded even in the absence of further global warming. These estimated unseen heat waves are caused by the same drivers as moderate observed events, but with more anomalous patterns. Moreover, altered contributions of circulation and soil moisture to temperature anomalies include amplified feedbacks in the surface energy budget. The methodological framework of combining different storyline approaches of heat waves with magnitudes beyond the observational record may ultimately contribute to adaptation and to the stress testing of ecosystems or socioeconomic systems to increase resilience to extreme climate stressors.
ISSN:0894-8755
1520-0442
DOI:10.1175/JCLI-D-20-0916.1