Evidence for an Increasing Role of Ocean Heat in Arctic Winter Sea Ice Growth
We investigate how sea ice decline in summer and warmer ocean and surface temperatures in winter affect sea ice growth in the Arctic. Sea ice volume changes are estimated from satellite observations during winter from 2002 to 2019 and are partitioned into thermodynamic growth and dynamic volume chan...
Gespeichert in:
Veröffentlicht in: | Journal of climate 2021-07, Vol.34 (13), p.5215-5227 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate how sea ice decline in summer and warmer ocean and surface temperatures in winter affect sea ice growth in the Arctic. Sea ice volume changes are estimated from satellite observations during winter from 2002 to 2019 and are partitioned into thermodynamic growth and dynamic volume change. Both components are compared with validated sea ice–ocean models forced by reanalysis data to extend observations back to 1980 and to understand the mechanisms that cause the observed trends and variability. We find that a negative feedback driven by the increasing sea ice retreat in summer yields increasing thermodynamic ice growth during winter in the Arcticmarginal seas eastward from the Laptev Sea to the Beaufort Sea. However, in the Barents and Kara Seas, this feedback seems to be overpowered by the impact of increasing oceanic heat flux and air temperatures, resulting in negative trends in thermodynamic ice growth of −2 km³ month−1 yr−1 on average over 2002–19 as derived from satellite observations. |
---|---|
ISSN: | 0894-8755 1520-0442 |
DOI: | 10.1175/jcli-d-20-0848.1 |