18F-FDG MicroPET and MRI Targeting Breast Cancer Mouse Model with Designed Synthesis Nanoparticles
The first aim of this study was the development of real-time, quantitative, and noninvasive visual observation that necessitates different noninvasive multimodal imaging methods. Second, the design of a high-sensitivity imaging free-ligand green chemistry nanoprobe is a critical diagnosis of breast...
Gespeichert in:
Veröffentlicht in: | Journal of nanomaterials 2022-06, Vol.2022 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The first aim of this study was the development of real-time, quantitative, and noninvasive visual observation that necessitates different noninvasive multimodal imaging methods. Second, the design of a high-sensitivity imaging free-ligand green chemistry nanoprobe is a critical diagnosis of breast cancer mouse models. The gadolinium-based nanoparticles as box-Behnken design (BBD) experiment are synthesized. A small biomolecule L-glutamine is attached to its surface nanoparticles as a template. Large surface-area-to-volume ratios of nanoparticles enhance the capacity for interactions with biomolecules and present more sites for conjugation. G. 2-Deoxy-2[18F]fluoro-D-glucose ([18F]F-FDG) is a quantitative and sensitive tracking instrument in Positron Emission Tomography (PET), also applicable for the in vivo and in vitro characterization of L-glutamine SiGdNPs. Optical imaging was done for 4T1 breast cancer tumor-induced mice. 18F-NP uptake values were significantly higher in primary breast cancer and brain tumors than [18F]F-FDG in PET at 30 min, injected (20 μl/g) via the tail vein with about 300 μCi of 18F-FDG loading. After 15 min of the administration of injection (26 μl/g), the first passed the lung intravenously without any injury to the lung showing promising T1-T2 MRI contrast properties. We receive these by application of a variety of imaging modalities, especially microPET and MRI. |
---|---|
ISSN: | 1687-4110 1687-4129 |
DOI: | 10.1155/2022/5737835 |